The doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 31) for C60. AFM remarks showed the existence of a compact packing film with a smooth surface. The FTIR spectra emphasized the bonding between CuPc and C60. UV-Vis Absorption spectroscopy confirmed that the CuPc was dominating the optical properties with a small shift in Q band towards higher wavelengths.
a-Ge: As thin films have prepared by thermal evaporation teclmique, then they were annealing at various temperatures within the
range (373-473) K. The result of X-ray di ffraction spectrum was showing that all the specimens remained in amorphous structure before and after annealing process. This paper studied the effect of annealing temperature as a function of wavelength on the optical energy gap and optical constants for the a-Ge:As thin films . Results have showed that there was an increasing in the optical energy gap
{Egopt) values with the in ,;rcasing of the annealing temperatures within
... Show MoreA thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show MoreZinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickn
Different thicknesseses of polycrystalline ZnTe films have been deposited on to glass substrates by vacuum evaporation technique under vacuum 2.1x10-5 mbar. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a cubic (zinc blende ) structure. The calculated microstructure parameters revealed that the crystallite size increases with increasing film thicknesses. The optical measurements on the deposited films were performed in different thicknesseses [ 400 , 450 and 500]nm, to determine the transmission spectrum and the absorption spectra as a function of incident wavelength. The optical absorption coefficient (α) of the films was determined from transmittance spectra in t
... Show MoreThe properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show MoreIn this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreIn this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
Structural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v
Chalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .