The research on coordination polymers chemistry based on organic-metal framework with bridging ligands has accelerated during the past two decades. It is an interested hot topic in the synthetic inorganic chemistry, which allowed the fabrication of a variety of interested materials. These materials have shown a range of applications including light harvesting and magnetic properties. The thesis is divided in three chapters. The first chapter gives a general introduction on the development of self-assembled polymeric species based on transition metal. It is also covered a summary of the literature review on the current state of the art on self-assembled coordination ploymers. Furthermore, it includes a description on various relevant topics such as the magnetic properties of macro- and micromolecules, spin crossover in transition metal compounds (SCO), the involvement of various bridging systems in the formation of self-assembled species, and highlight current examples in the synthesis of coordination polymer compounds. The uses and applications of current organic ligand systems and their metal complexes have been included in this chapter. It also includes the aim and the objectives of this investigation.
SnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.
Five derivatives of thiadiazole were prepared with aldehydes and alkyl halides, compoundA: 2-amino-5-thiol-1,3,4- thiadiazole, compound B :2-(o-hydroxybenzylidine)amino-5-thiol-1,3,4-thiadiazole, compoundC: 2(2-butan-lidine)amino-5-thiol-1,3,4-thiadiazole, compound E: 2- amino-5-(2-Propanylthio)-1,3,4-thiadiazol) and compound F:2(o-chlorobenzylamino)-5-(2-propanyl thio)-1,3,4 thiadiazol. All prepared compounds were diagnosed by (IR) and (UV) Spectroscopy. All of those compounds were screened for their anti-microbial activity in vitro. The results show that most of the compounds A, B, C exhibited moderate to good activity against Gram-positive bacteria and the same compound exhibit low to moderate activity on most gram-negative bacte
... Show MoreFour new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.
This paper includes the synthesis of some new nucleoside analogues starting with 2-substituted benzimidazole derivative (7-9), that synthesized by condensation of O-phenylenediamine with p-chloro benzaldehyde and two substituted benzoic acid , which on nucleophilic substitution with propargyl bromide gave a new N-substituted compounds (10-12). D-Fructose and D-galactose were chosen as a sugar moiety which were protected, brominated and azotated to give azido sugars (5) and (6), then they were subjected to 1,3-dipolar cycloaddition reaction with N-substuted compounds afforded bloked nucleoside analoges (13-16), which after hydrolysis gave our target the free nucleoside analogues (17-20). All prepared compounds were identified by FT-IR
... Show MoreA new series of 5-methoxy-2-mercapto benzimidazole derivatives were synthesized by the reaction of 5-methoxy- 2-mercaptobenzimidazole with chloroacetic acid and affords 2-((5-methoxy-1H-benzo[d]imidazol-2-yl)thio) acetic acid (1),which on cyclization with acetic anhydride and pyridine gives 7- methoxybenzo[4,5]imidazo[2,1-b]thiazol- 3(2H)-one(2), which on condensation with different aryl aldehydes in the presence of anhydrous sodium acetate in glacial acetic acid, furnishes a arylidene thiazolidinone. The purity of the synthesized compounds was confirmed by melting point and TLC.The structures were established by different spectral analysis such as FTIR,1HNMR, and CHN analysis. The newly synthesized compounds (3a-d) were in vivo evaluated f
... Show MoreA synthesis series of new heterocyclic derivatives (A2-A7) (pyrrole, pyridazine, oxazine and imidazol) derived from 4-acetyl-2,5-dichloro-1-(3,5-dinitrophenyl)-1H-pyrrole-3-carboxylate(A1) have been synthesised. Synthesis of compound (A2) by the reaction of starting material (A1) with hydroxyl amine hydrochloride in the presence of pyridine. Compound (A2) was reacted with hydrazine hydrate in dry benzene to give (A3) derivative. The compound )A3( deals with sodium nitrite to give diazonium salt, and the reaction diazonium salt with ethyl acetoacetate to produce compound (A4). To a mixture of compound (A4) and hydroxyl amine with sttired to yield (A5).Compound (A6) was prepared by reaction compound (A4) with thiosemicarbazide in presence
... Show MoreBy unusual method for separating two isomers of a substituted nitro-coumarin using a soxhlet extractor and in controlling temperature to get a selective nitration reaction, several new Schiff base coumarins were synthesized from nitro coumarins as starting material, which were reduced by Fe in glacial acetic acid to produce corresponding amino coumarin derivatives. Then the latter was reacted with different aromatic aldehydes to produce the desired Schiff bases derivatives. After characterization by Fourier transform infrared (FT-IR), Proton nuclear magnetic resonance (1HNMR) and Carbon-13 nuclear magnetic resonance (C-NMR), all these compounds were evaluated as potential Antimicrobial and Antioxidant Agents.