Preferred Language
Articles
/
KBa-mYcBVTCNdQwCVVjC
Confinement factor and carrier recombination of InGaAsP/InP quantum well lasers
...Show More Authors

Low-dimensional materials have attracted significant attention in developing and enhancing the performance of quantum well lasers due to their extraordinary unique properties. The optical confinement factor is one of the most effective parameters for evaluating the optimal performance of a semiconductor laser diode when used to measure the optical gain and current threshold. The optical confinement factor and the radiative recombination of single quantum wells (SQW) and multi-quantum wells (MQW) for InGaAsP/InP have been theoretically studied using both radiative and Auger coefficients. Quantum well width, barrier width, and number of quantum wells were all looked at to see how these things changed the optical confinement factor and radiative and non-radiative recombination coefficients for multi-quantum well structures. It was found that the optical confinement factor increases with an increase in the number of wells. The largest value of the optical confinement factor was determined when the number of wells was five at any width. The optical confinement coefficient was 0.23, 0.216, and 0.203 for the number of wells (3, 4, and 5) and well width (27, 19.5, and 15) nm, respectively. In addition, the radiative recombination coefficient increases with the width of the quantum well after 5 nm, and it is much bigger than that of its bulk counterparts.

Scopus Crossref
View Publication
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Preparation of Xerogel Films Doped with R6G Laser Dye using spin coating technique and Study the Spinning parameters Baha T.
...Show More Authors

Spin coating technique has been applied in this work to prepared Xerogel films doped with Rhodamine 6G laser dyes. The solid host of laser dye modifies its spectroscopic properties with respect to liquid host. During the spin coating process the dye molecules suffer from changing their environment. The effects of three parameters were studied here: the spinning speed, multilayer coating and formaldehyde addition

View Publication Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Temperature and Residual Stress Distribution in CO2 Laser Welded Aluminum 6061 Plates Using FEM
...Show More Authors

This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of ZnO doped Mg thin films deposited by pulse laser deposition (PLD)
...Show More Authors

This paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Iraqi Journal Of Physics
The magnetic switch manufacturing by using ferrofluid and ferrofluid doped copper nanoparticles
...Show More Authors

In this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor l

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Effect of laser energy and ablation time on the formation of aluminum nanoparticles by nanosecond laser ablation of aluminum target in ethanol
...Show More Authors

In this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Simultaneous influences of hematocrit in the erythrocyte medium on erythrocyte aggregation and sedimentation: a kinetic study by a laser scattering technique
...Show More Authors

The erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Characterization and Photovoltaic Effect of (Sb2O3: Metal Oxides)/ C-Si Heterojunctions
...Show More Authors

This work concerns the synthesis of two types of composites based on antimony oxide named (Sb2O3):(WO3, In2O3). Thin films were fabricated using pulsed laser deposition. The compositional analysis was explored using Fourier transform infrared spectrum (FTIR), which confirms the existence of antimony, tungsten, and indium oxides in the prepared samples. The hall effect measurement showed that antimony oxide nanostructure thin films are p-type and gradually converted to n-type by the addition of tungsten oxide, while they are converted almost instantly to n-type by the addition of indium oxide. Different heterojunction solar cells were prepared from (Sb2O3:WO

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 02 2014
Journal Name
International Journal Of Scientific & Technology Research
Synthesis, Structure And Characterization Of Zns Qds And Using It In Photocatalytic Reaction
...Show More Authors

ZnS nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM). The particle size is determined by field effect scanning electron microscopy (FESEM), UV-Visible absorption spectroscopy and XRD. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prep

... Show More
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Laser wavelength and energy effect on optical and structure properties for nano titanium oxide prepared by pulsed laser deposit
...Show More Authors

Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
The emission spectra and hydrodynamic properties of Al plasma using Nd-YAG laser
...Show More Authors

In this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,

... Show More
View Publication Preview PDF
Crossref