Low-dimensional materials have attracted significant attention in developing and enhancing the performance of quantum well lasers due to their extraordinary unique properties. The optical confinement factor is one of the most effective parameters for evaluating the optimal performance of a semiconductor laser diode when used to measure the optical gain and current threshold. The optical confinement factor and the radiative recombination of single quantum wells (SQW) and multi-quantum wells (MQW) for InGaAsP/InP have been theoretically studied using both radiative and Auger coefficients. Quantum well width, barrier width, and number of quantum wells were all looked at to see how these things changed the optical confinement factor and radiative and non-radiative recombination coefficients for multi-quantum well structures. It was found that the optical confinement factor increases with an increase in the number of wells. The largest value of the optical confinement factor was determined when the number of wells was five at any width. The optical confinement coefficient was 0.23, 0.216, and 0.203 for the number of wells (3, 4, and 5) and well width (27, 19.5, and 15) nm, respectively. In addition, the radiative recombination coefficient increases with the width of the quantum well after 5 nm, and it is much bigger than that of its bulk counterparts.
Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreDensity Functional Theory (DFT) at the B3LYP/ 6-311G basis set level and
semiemperical methods (PM3, AM1, and MINDO/3) were performed on six new
substituted Schiff bases derivatives of INHC (N-(3-(phenylidene-allylidene)
isonicotinohydrazide) using Gaussian-03 program. The calculated quantum chemical
parameters correlated to the inhibition efficiency were studied and discussed at their
equilibrium geometry and their correct symmetry (Cs). Comparisons of the order of
inhibition efficiency of the Schiff bases derivatives, and local electrophilic and
nucleophilic reactivity have analyzed. Some physical properties also were studied
such as heat of formation, total energy and dipole moment...etc. Also vibration
freq
Receipt date:3/13/2021 accepted date:5/26/2021 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
energy is one of the strategic resources within international politics, and this is through the existing competition between the international powers on it, and the global powers have begun to rely on interest in new areas, such as import, depending on new projects an
... Show MoreBackground: Colorectal cancer is a high risk disease with rapidly progression medical problems and high mortality rate. Tissue polypeptide specific antigen can be classified as biomarker candidates in colorectal cancer and other kinds of cancer. Vascular endothelial-derived growth factor has a curial role in the formation of new blood vessels. DNA methylation may decrease invasiveness of cancer.
Objectives: This study was designed to measure the potential role of some serological biomarkers in the progression of colorectal cancer as well as their relations to P53 expression, global 5-methylcytosine.
Patients and Methods: This study involved of 60 patients with colorectal ca
... Show MoreIn this work, we have used the QCD dynamic scenario of the quark gluon interaction to investigate and study photon emission theoretically based on quantum theory. The QCD theory is implemented by deriving the photon emission rate equation of the state of ideal QGP at a chemical potential. The photon rate of the quark-gluon interaction has to be calculated for the anti up-gluon interaction in the g → γ system at the temperature of system with critical temperature ( 132.38, , and 198.57) MeV and photon energy ( GeV. We investigated a significant effect of critical temperature, strength coupling, and photon energy on the photon rate contribution. Here, the increased photon emission rate and decreased streng
... Show More