The structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks intensity when annealing temperature increased and the grain size will be increased through the rang (19.78- 59.64) nm. The optimum annealing temperatures gained from this study is (200) °C. the enhancements of the solar cell efficiency were slightly upgraded to reach 0.35% with respect to the annealing temperature.
Recently, several concepts and expressions have emerged that have often preoccupied the world . around the concept of environment and sustainability. This is due to the negative and irresponsible impact of man and his innovations in various industrial and technological fieldsthat have damaged the natural environment. Architecture and cities at the broader level are some of the man made components that caused these negative impacts and in the same time affected by them. What distinguishes architectural and urban projects is the consumption of large . quantities of natural resources and production larger amounts of waste and pollution, along the life of these projects. At the end of the twentieth century and the beginning of the twenty-fir
... Show MoreThe paper presents the results of precise of the calculations of the diffusion of slow electrons in ionospheric gases, such as, (Argon – Hydrogen mixture, pure Nitrogen and Argon – Helium – Nitrogen) in the presence of a uniform electric field and temperature 300 Kelvin. Such calculations lead to the value Townsend's energy coefficient (KT) as a function of E/P (electric field strength/gas pressure), electric field (E), electric drift velocity (Vd), momentum transfer collision frequency ( ), energy exchange collision frequency ( ) and characteristic energy (D/?). The following physical quantities are deduced as function s E/P: mean free path of the electrons at unit pressure, mean energy lost by an electron per collision, mean velocit
... Show MoreRegulatory T (Treg) cells are one of the major immunosuppressive cell types in cancer and a potential target for immunotherapy, but targeting tumor-infiltrating (TI) Treg cells has been challenging. Here, using single-cell RNA sequencing of immune cells from renal clear cell carcinoma (ccRCC) patients, we identify two distinct transcriptional fates for TI Treg cells, Fate-1 and Fate-2. The Fate-1 signature is associated with a poorer prognosis in ccRCC and several other solid cancers. CD177, a cell surface protein normally expressed on neutrophil, is specifically expressed on Fate-1 TI Treg cells in several solid cancer types, but not on other TI or peripheral Treg cells. Mechanistically, blocking CD
The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreBackground: This study aimed to apply a high-power pulsed alexandrite laser in vitro, the researchers tested different exposure periods, pulse lengths, and laser fluencies to see which dosage was most successful against S. aureus bacteria, which had developed resistance to many antibiotics. Method: Three bacteria samples were exposed to laser beams for 30 seconds with a 5ms pulse duration and a laser fluency of 5J/cm2. The process was repeated with laser fluencies of 10, 15, and 20. Results: The study was carried out by using different doses of Alexandrite laser. Results: There are significant differences (p = 0.05) in the mean number of bacteria colonies exposed for 30 and 60 seconds at any laser fluencies utilized in the present i
... Show MoreA Tonido cloud server provides a private cloud storage solution and synchronizes customers and employees with the required cloud services over the enterprise. Generally, access to any cloud services by users is via the Internet connection, which can face some problems, and then users may encounter in accessing these services due to a weak Internet connection or heavy load sometimes especially with live video streaming applications overcloud. In this work, flexible and inexpensive proposed accessing methods are submitted and implemented concerning real-time applications that enable users to access cloud services locally and regionally. Practically, to simulate our network connection, we proposed to use the Raspberry-pi3 m
... Show MoreThe study included a statement toxicity of some heavy metals individually and collectively and the existence of plant nutrients in the center Agirenk bluish green moss growth and Askhaddm biomass as an indicator of the study, in addition to portability moss on the accumulation of the metal
This paper studies the effect of mean wind velocity on tall building. Wind velocity, wind profile and wind pressure have been considered as a deterministic phenomenon. Wind velocity has been modelled as a half-sinusoidal wave. Three exposures have been studied B, C, and D. Wind pressure was evaluated by equation that joined wind pressure with mean wind velocity, air density, and drag coefficient.
Variations of dynamic load factor for building tip displacement and building base shear were studied for different building heights, different mode shapes, different terrain exposures, and different aspect ratios of building plan. SAP software, has been used in modelling and dynamic analysis for all case studies.
... Show More