The structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks intensity when annealing temperature increased and the grain size will be increased through the rang (19.78- 59.64) nm. The optimum annealing temperatures gained from this study is (200) °C. the enhancements of the solar cell efficiency were slightly upgraded to reach 0.35% with respect to the annealing temperature.
Abstract
A new type of solar air heater was designed, fabricated, and tested in Baghdad, Iraq winter conditions. The heater consists of two main parts. The horizontal section was filled with the black colored iron chip while the vertical part has five pipes filled with Iraqi paraffin wax. A fan was fixed at the exit of the air. Two cases were studied: when the air moved by natural convection and when forced convection moved it. The studied air heater has proven its effectiveness as it heated the air passing through it to high temperatures. The results manifest that using little air movement makes the temperatures, stored energies, and efficiencies of the two studied cases converge
... Show MoreThis review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology
... Show MoreThis research including, CO3O4 was prepared by the chemical spry pyrolysis, deposited film acceptable to assess film properties and applications as photodetector devise, studying the optical and optoelectronics properties of Cobalt Oxide and effect of different doping ratios with Br (2, 5, 8)%. the optical energy gap for direct transition were evaluated and it decreases as the percentage Br increase, Hall measurements showed that all the films are p-type, the current–voltage characteristic of Br:CO3O4 /Si Heterojunction show change forward current at dark varies with applied voltage, high spectral response, specific detectivity and quantum efficiency of CO3O4 /Si detector with 8% of Br ,was deliberate, extreme value with 673nm.
... Show MoreIn this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate
... Show MoreThe CIGS/CdS p-n junction thin films were fabricated and deposited at room temperature with rate of deposition 5, and 6 nm secG1 , on ITO glass substrates with 1mm thickness by thermal evaporation technique at high vacuum pressure 2×10G5 mbar, with area of 1 cm2 and Aluminum electrode as back contact. The thickness of absorber layer (CIGS) was 1 µm while the thickness of the window layer CdS film was 300 nm. The X-ray Diffraction results have shown that all thin films were polycrystalline with orientation of 112 and 211 for CIGS thin films and 111 for CdS films. The direct energy gaps for CIGS and CdS thin films were 1.85 and 2.4 eV, respectively. Atomic Force Microscopy measurement proves that both films CIGS and CdS films have nanostru
... Show MoreAbstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show Moreten albino male rates were orally treated daily 20% and 30% ethanol for 30 days treatment with 30%ethanol caused of hippocampuse of darckness google hospital patients