In this paper, the dynamic of quark and anti-quark interaction has been used to study the production of photons in the annihilation process based on the theory of chromodynamic. The rate of the photon is to be calculated for charm and anti-strange interaction c→γg system with critical temperature 113 and 130 MeV and photon energy GeV/c. Here the critical temperature, strength coupling and photons energy are assumed to be affected dramatically on the rate of photons emission of state interaction c, which can form gluon possible structures and photon emission state. The decreased photons emission yields with increased strength couple of quarks reaction due to increase critical temperature from 113 MeV to 130 MeV were predicted. We can be found less difference in photons rate for the two different critical temperatures and strength coupling.
For more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreUtilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show MoreAbstract
This research is aimed at indicating the impact of business process reengineering on corporate performance in the Office of the Inspector General of the Ministry of Higher Education and Scientific Research of the Iraqi study has identified a problem in a number of the most important questions - what the impact of the Business Process Reengineering at the corporate office performance indicators respondent? What are the actual results of the analysis of paths Administrative Process Engineering and Corporate Performance respondent in the office? In order to achieve the goal of the research and answer the questions of the problem, the study applied to a sample of
... Show MoreThe research aims to identify the availability of some basic competencies that are required to be available to workers in digital agricultural Extension from the point of view of senior management, middle management, and, employees with Post-graduate education degrees, represented by the following: Transition to digital agricultural Extension for sustainable and smart family farms, benefiting from international expertise and experiences in applying for Digital agricultural Extension, preparing and implementing Extension messages through platforms, factors affecting the effectiveness of digital agricultural Extension and its platforms, following up and evaluating the activities and programs of the digital Extension platform. The research pop
... Show MoreIn this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show MoreThis study delves into the design optimization of a hydropower harvesting system, exploring various parameters and their influence on system performance. By modifying the variables within the model to suit different flow conditions, a judiciously optimized design is attainable. Notably, the lift force generated is found to be intricately linked to the strategic interplay of the bluff body's location, cylinder dimensions, and flow velocity. The findings culminate in the establishment of empirical equations, one for lift force and another for displacement, based on the force equation. Many energy harvesting approaches hinge on the reciprocating motion inherent to the structural system. The methodology developed in this study emerges as a pot
... Show MoreIn this work , we applied the nuclear shell model by using Modified Surface Delta Interaction ( MSDI ) to study the nuclear structure for Ti42-44 nuclei from the calculation of the energy level values and its total angular momentum . After comperation with the experiment values which found to be rather in good agreement and determined the total angular momentum values of energy levels which are not assigned experimently , as soon as , we certify some values that were not certained experimently .
Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreThe physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.