This paper presents a comparison study on thermal performance conic cut twist tape inserts in laminar flow of nanofluids through a constant heat fluxed tube. Three tape configurations, namely, quadrant cut twisted tape (QCT), parabolic half cut twisted tape (PCT), and triangular cut twisted (VCT) of twist ratio= 2.93 and cut depth= 0.5 cm were used with 1% and 2% volume concentration of SiO2/water and TiO2/water nanofluids. Typical twist tape with twist ratio of= 2.93 was used for comparison. The results show that the heat transfer was enhanced by increasing of Reynolds number and nanoparticles concentration of nanofluid. The results have also revealed that the use of twist tape enhanced the heat transfer coefficient significantly and maximum heat transfer enhancement was achieved by the presence of triangular cut twist tape insert with 2% volume concentration of SiO2nanofluid. Over the range investigated, the maximum thermal performance factor of 5.13 is found with the simultaneous use of the SiO2nanofluid at 2% volume concentration VCT at Reynolds number of 220. Furthermore, new empirical correlations for Nusselt number, friction factor, and thermal performance factor are developed and reported.
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
This work aimed to use effective, low-cost, available, and natural adsorbents like eggshells for removal of hazardous organic dye result from widely number of industries and study the influence of different eggshell particle size (75, 150) Mm. The adsorbent was characterized by SEM, EDX, BET and FTIR . The initial pH of dye solutions varying from 4 to 10 , the initial concentrations of methyl violet (MV) 2B range (20-80) mg/L, dosage range (0.5-10) g, contact time (30-180) min, and particles size of the adsorbent (75, 150) Mm were selected to be studied. Two adsorption isotherms models have been used to fit the experimental data. Langmuir and Freunlich models were found to more represent the experiments with high
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
The performance of flexible pavements is significantly impacted by the permanent deformation (rutting) of asphalt pavements. Rutting shortens the pavement's useful service life and poses significant risks to those using the highway since it alters vehicle handling characteristics.. The aim of this research is to evaluate the permanent deformation of asphalt mixtures under different conditions,to achieve this aim 108 cylindrical specimens has been prepared and tested under repeated loading in uniaxial compression mode. Five factors were considered in this research, these factors represent the effect of environmental condition and traffic loading as well as mixture properties, they include testing temperature, loading condition (stress level
... Show MoreSand dunes are spread in multiple places in the world especially in a desert area as a result of economic development and construction processes, there was a need to study the behavior of sand dunes and make it suitable for construction. This paper aims to study the effect of adding sodium silicate on the cohesion strength of sand dune and its behavior. The results show that the cohesion strength increase as a percentage of sodium silicate increase (addition 8% Sodium silicate show the higher cohesion) and the cohesion between sand dune particles increase excepted when using 10% sodium silicate the cohesion began to decrease. However, the effect of curing time is significant and shows
The effects of poles distances of a discharge tube (cathode and anode) were investigated. The distances(90,95,100,110,115,120,130,140)mm are considered. The influence of (25mT) parallel and (2mT) normal magnetic fields with respect to the discharge tube on electron temperature under a pressure of (6pascal) and (900volt) was studied by implementing double Langmuire probe into plasma. Curves fitting were performed to find the optimum values of electron temperature for all cases in this work.We found that the electron temperature as a function of poles distances is exponential form
The technique of adding Carbon Nano-Tubes to What liquids is a new important method used to enhance the thermal properties of liquids such as specific heat and heat capacity.
The experimental part was carried out using water-based nanoparticles such as Carbon Nano Tubes, with different concentrations at (0.1, 0.3, o.5and 0.7wt %) of MWCNT (Multi Wall Carbon Nanotubes) and distilled water as a base, in different temperatures. The change in the value of heat capacity of a liquid was investigated. The value of heat capacity for Nano fluids increased with increasing the Carbon NanoTubes particles,when as compared with the value of heat capacity for distilled water . The best concentration of MWCNTs was improved with heat capacity about 60