Producing pseudo-random numbers (PRN) with high performance is one of the important issues that attract many researchers today. This paper suggests pseudo-random number generator models that integrate Hopfield Neural Network (HNN) with fuzzy logic system to improve the randomness of the Hopfield Pseudo-random generator. The fuzzy logic system has been introduced to control the update of HNN parameters. The proposed model is compared with three state-ofthe-art baselines the results analysis using National Institute of Standards and Technology (NIST) statistical test and ENT test shows that the projected model is statistically significant in comparison to the baselines and this demonstrates the competency of neuro-fuzzy based model to produce a pseudo-random number.
Glaucoma is one of the most dangerous eye diseases. It occurs as a result of an imbalance in the drainage and flow of the retinal fluid. Consequently, intraocular pressure is generated, which is a significant risk factor for glaucoma. Intraocular pressure causes progressive damage to the optic nerve head, thus leading to vision loss in the advanced stages. Glaucoma does not give any signs of disease in the early stages, so it is called "the Silent Thief of Sight". Therefore, early diagnosis and treatment of retinal eye disease is extremely important to prevent vision loss. Many articles aim to analyze fundus retinal images and diagnose glaucoma. This review can be used as a guideline to help diagnose glaucoma. It presents 63 artic
... Show MoreIn this paper, we apply the notion of a bipolar fuzzy n-fold KU-ideal of KU- algebras. We introduce the concept of a bipolar fuzzy n-fold KU-ideal and investigate several properties. Also, we give relations between a bipolar fuzzy n- fold KU-ideal and n-fold KU-ideal. The image and the pre-image of bipolar fuzzy n-fold KU-ideals in KU-algebras are defined and how the image and the pre- image of bipolar fuzzy n-fold KU-ideals in KU-algebras become bipolar fuzzy n- fold KU-ideals are studied. Moreover, the product of bipolar fuzzy n-fold KU- ideals in Cartesian product KU-algebras is given.
The notion of interval value fuzzy k-ideal of KU-semigroup was studied as a generalization of afuzzy k-ideal of KU-semigroup. Some results of this idea under homomorphism are discussed. Also, we presented some properties about the image (pre-image) for interval~ valued fuzzy~k-ideals of a KU-semigroup. Finally, the~ product of~ interval valued fuzzyk-ideals is established.
In thisˑ paperˑ, we apply the notion ofˑ intuitionisticˑ fuzzyˑ n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionisticˑ fuzzy closed idealˑ and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, aˑ fewˑ results of intuitionisticˑ fuzzyˑ n-ˑfold KU-ideals of a KU-algebra underˑ homomorphismˑ are discussed.
The use of a communication network in the closed loop control systems has many advantages such as remotely controlling equipment, low cost, easy to maintenance, efficient information transmission, etc. However, the Networked Control System (NCS) has many drawbacks, such as network-induce end-to-end time delay and packet loss, which lead to significant degradation in controller performance and may result in instability. Aiming at solving performance degradation in NCS, this paper propose to take the advantages and strength of the conventional Proportional-Integral-Derivative (PID), Fuzzy Logic (FL), and Gain Scheduling (GS) fundamentals to design a Fuzzy-PID like-Gain Scheduling (F-PID-GS) control technique, which has been proved to be ef
... Show MoreThe last decade of this 20th century provides a wide spread of applications of one of the computer techniques, which is called Fuzzy Logic. This technique depends mainly on the fuzzy set theory, which is considered as a general domain with respect to the conventional set theory. This paper presents in initiative the fuzzy sets theory and fuzzy logic as a complete mathematics system. Here it was explained the concept of fuzzy set and defined the operations of fuzzy logic. It contains eleven operations beside the other operations which related to fuzzy algebra. Such search is considered as an enhancement for supporting the others waiting search activities in this field.
In this article, performing and deriving the probability density function for Rayleigh distribution by using maximum likelihood estimator method and moment estimator method, then crating the crisp survival function and crisp hazard function to find the interval estimation for scale parameter by using a linear trapezoidal membership function. A new proposed procedure used to find the fuzzy numbers for the parameter by utilizing ( to find a fuzzy numbers for scale parameter of Rayleigh distribution. applying two algorithms by using ranking functions to make the fuzzy numbers as crisp numbers. Then computed the survival functions and hazard functions by utilizing the real data application.
This paper introduces the concept of fuzzy σ-ring as a generalization of fuzzy σ-algebra and basic properties; examples of this concept have been given. As the first result, it has been proved that every σ-algebra over a fuzzy set x* is a fuzzy σ-ring-over a fuzzy set x* and construct their converse by example. Furthermore, the fuzzy ring concept has been studied to generalize fuzzy algebra and its relation. Investigating that the concept of fuzzy σ-Ring is a stronger form of a fuzzy ring that is every fuzzy σ-Ring over a fuzzy set x* is a fuzzy ring over a fuzzy set x* and construct their converse by example. In addition, the idea of the smallest, as an important property in the study of real analysis, is studied
... Show MoreIn this paper, we will study a concepts of sectional intuitionistic fuzzy continuous and prove the schauder fixed point theorem in intuitionistic fuzzy metric space as a generalization of fuzzy metric space and prove a nother version of schauder fixed point theorem in intuitionistic fuzzy metric space as a generalization to the other types of fixed point theorems in intuitionistic fuzzy metric space considered by other researchers, as well as, to the usual intuitionistic fuzzy metric space.