Many purposes require communicating audio files between the users using different applications of social media. The security level of these applications is limited; at the same time many audio files are secured and must be accessed by authorized persons only, while, most present works attempt to hide single audio file in certain cover media. In this paper, a new approach of hiding three audio signals with unequal sizes in single color digital image has been proposed using the frequencies transform of this image. In the proposed approach, the Fast Fourier Transform was adopted where each audio signal is embedded in specific region with high frequencies in the frequency spectrum of the cover image to save much more details of the cover image and avoid any doubts that there is any secret information are hidden inside it. The quality of the stego-image and the extracted audio files are evaluated with the standard evaluation metric. The simulation results shown significant results of these metrics and achieve good imperceptibility and high security of the stego-image. The SNR and SPCC values are considered acceptance that means significant in terms quality and similarity of the reconstructed signal.
In this paper, a method is proposed to increase the compression ratio for the color images by
dividing the image into non-overlapping blocks and applying different compression ratio for these
blocks depending on the importance information of the block. In the region that contain important
information the compression ratio is reduced to prevent loss of the information, while in the
smoothness region which has not important information, high compression ratio is used .The
proposed method shows better results when compared with classical methods(wavelet and DCT).
Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreA loS.sless (reversible) data hiding (embedding) method inside an image (translating medium) - presented in the present work using L_SB (least significant bit). technique which enables us to translate data using an image (host image), using a secret key, to be undetectable without losing any data or without changing the size and the external scene (visible properties) of the image, the hid-ing data is then can be extracted (without losing) by reversing &n
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreData hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show More