Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amount of energy, especially during the training phase. The transmission of big data between service providers, users and data centres emits carbon dioxide as a result of high power consumption. This chapter proposes a theoretical framework for big data analytics using computational intelligent algorithms that has the potential to reduce energy consumption and enhance performance. We suggest that researchers should focus more attention on the issue of energy within big data analytics in relation to computational intelligent algorithms, before this becomes a widespread and urgent problem.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreThis work has been done to prepare a series of new alkene compounds derived from 4-thiozolidinones by substituting different aldehydes, P-acetamido-phenol, and 2-mercapto-benzoimidazole, which were used as starting materials to form ester [I]a,b and then make hydrazides [II]a,b, which were used to prepare 1, 3, and 4-oxadiazoles [III]a,b, which were then used for prepared Schiff bases [IV]a-f, The next step was the synthesis of 4-thiazoldinone derivatives [V]a-f from Schiff bases. The final step was the synthesis of alkenes [VII]a-f, the prepared derivatives were identified with spectral methods (FT-IR, 1H-NMR, mass, and CHNS). The antibacterial activity of the prepared derivatives was evaluated against four types of bacteria, pos
... Show MoreIn this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.
This study aims to improve the quality of satellites signals in addition to increase accuracy level delivered from handheld GPS data by building up a program to read and decode data of handheld GPS. Where, the NMEA protocol file, which stands for the National Marine Electronics Association, was generated from handheld GPS receivers in real time using in-house design program. The NMEA protocol file provides ability to choose points positions with best status level of satellites such as number of visible satellite, satellite geometry, and GPS mode, which are defined as accuracy factors. In addition to fix signal quality, least squares technique was adopted in this study to minimize the residuals of GPS observations and enh
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More