Oral tablets containing solubilized drug in the presence of appropriate excipients may give us an immediate release of the drug. Phospholipid solid dispersion (PSD) is a branch of solid dispersion in which phospholipid acts as a hydrophilic polymer in the presence of a suitable adsorbent to enhance the solubility of poorly soluble drugs. The anti-hyperlipidemic drug Atorvastatin (ATR) is an example of such drug, as it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Phosphatidylcholine in combination with magnesium aluminum silicate as an adsorbent in a ratio of ATR: PC: MAS 1:3:4 was used to prepare ATR PSD by the solvent evaporation method, the product showed acceptable physical properties and utilized for the preparation of immediate-release tablets (IRTs) of ATR. Ten formulas of ATR- IRTs were prepared by direct compression method using different types and concentrations of diluents (Avicel®PH102, Avicel®PH101, and starch) and superdisintegrants (crospovidone, croscarmellose sodium, and sodium starch glycolate) and evaluated for their drug content, weight variation, hardness, friability, in vitro disintegration time and dissolution profile. The tablets formula (T10) that were prepared with ATR-PSD and Avicel®PH102 as a diluent and Croscarmellose Sodium (CCS) 5% w/w as super disintegrant show the shortest disintegration time (DT) (38 ±1 sec.) and best drug release (91% within 15 min) in 0.05M phosphate buffer (pH 6.8).
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More