The inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlation amid the BMQ and electronic structures of examined inhibitor and their trial corrosion inhibition efficiencies. The structural data, as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy) and dipole moment (μ), ∆E is energy gap, the charge distribution, η is absolute hardness and softness Ϭ, ∆N is number of electrons moved from BMQ to the surface of metal, as well as some electronic parameters, calculated and discussed to understanding the process of corrosion inhibition.
The ongoing research to improve the clinical outcome of titanium implants has resulted in the implementation of multiple approaches to deliver osteogenic growth factors accelerating and sustaining osseointegration. Here we show the presentation of human bone morphogenetic protein 7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate) (PEA). We have previously shown that PEA promotes fibronectin organization into nanonetworks exposing integrin- and growth-factor-binding domains, allowing a synergistic interaction at the integrin/growth factor receptor level. Here, titanium discs were coated with PEA and fibronectin and then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells were used to investigate cellular resp
... Show MoreThe main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope
... Show MoreSoftware Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show MoreSeepage occurs under or inside structures or in the place, where they come into contact with the sides under the influence of pressure caused by the difference in water level in the structure U / S and D / S. This paper is designed to model seepage analysis for Kongele (an earth dam) due to its importance in providing water for agricultural projects and supporting Tourism sector. For this purpose, analysis was carried out to study seepage through the dam under various conditions. Using the finite element method by computer program (Geo-Studio) the dam was analysed in its actual design using the SEEP / W 2018 program. Several analyses were performed to study the seepage across Kongele
Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show More