The inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlation amid the BMQ and electronic structures of examined inhibitor and their trial corrosion inhibition efficiencies. The structural data, as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy) and dipole moment (μ), ∆E is energy gap, the charge distribution, η is absolute hardness and softness Ϭ, ∆N is number of electrons moved from BMQ to the surface of metal, as well as some electronic parameters, calculated and discussed to understanding the process of corrosion inhibition.
Background: Aesthetic archwires are used to overcome the aesthetic problems of stainless steel wires but the color of the coating layer can be changed with time when exposed to oral environments. The aim of this study was to evaluate the degree of color change of different aesthetic archwires from different companies under different coloring solutions. Materials and Methods: One hundred fifty samples of coated archwires from three companies (Highland, G&H and Dany) were immersed in 5 solutions (artificial saliva, turmeric, tea, coffee and Miranda) to evaluate the degree of color changes after 7, 14 and 21 days using visible spectrophotometer. Data were collected and analyzed using one way ANOVA and post hoc Tukey’s tests. Resu
... Show MoreWalkability as one of the Planning Treatments to Face Epidemics in Cities
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
In this work pyrazolin derivatives were prepared from the diazonium chloride salt of 4-aminobenzoic acid. Azo compounds were prepared from the reaction of an ethanolic solution of sodium acetate and calculated amount of active methylene compound namely, acetyl acetone to obtain the corresponding hydrazono derivative (1). Cyclocondensation reaction of compounds (1) with hydrazine hydrate and phenyl hydrazine in boiling ethanol affording the corresponding pyrazoline-5-one derivatives of 4-aminobenzoic acid (2,3). Then compound (3) was reacted with thionyl chloride to give the corresponding acid chloride derivative(4), followed by conversion into the corresponding acid hydrazide derivative (5) carboxylic acid thiosemicarbazide (11), esters
... Show MoreThe syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe
... Show MoreBackground: Whey protein is the green-yellow colored, liquid portion of the milk, and it is also called the cheese serum, it is obtained after the separation of curd, during the coagulation of the milk. It contains a considerable amount of α-helix pattern with an evenly distributed hydrophobic and hydrophilic as well as basic and acidic amino acids along with their polypeptide chain. The major whey protein constituents include β-lactoglobulin (β-LG),α-lactalbumin (α-LA), immunoglobulins (IG), bovine serum albumin (BSA), bovine lactoperoxidase (LP), bovine lactoferrin (BLF) and minor amounts of a glycol macro peptide (GMP). Osseointegration can be defined as a process that is immune driven which leads to the formatio
... Show MoreThe current study introduces a novel technique to handle electrochemical localized corrosion in certain limited regions rather than applying comprehensive cathodic protection (CP) treatment. An impressed current cathodic protection cell (ICCPC) was fabricated and firmly installed on the middle of a steel structure surface to deter localized corrosion in fixed or mobile steel structures. The designed ICCPC comprises three essential parts: an anode, a cathode, and an artificial electrolyte. The latter was developed to mimic the function of the natural electrolyte in CP. A proportional-integrated-derivative (PID) controller was designed to stabilize this potential below the ICCPC at a cathodic potential of −850 mV, which is crucial for prote
... Show More