Mobile ad hoc network is nothing but the temporary network which is having the collection of mobile nodes. Routing and broadcasting are major operations of MANET network. The major operation in ad hoc mobile network is the broadcasting which sometime results to storm problem of the broadcast if the forwarding mechanism is not properly designated. Thus the challenges in the MANET are to reduce the broadcasting redundancy and under high transmission error rate provides high delivery ratio. Hence in our proposed research, we are introducing and investigating the new mechanism of broadcasting called Dual Covered Broadcast. This method takes the broadcast redundancy advantage order to improve packet delivery ratio especially under environments where transmission error rate higher. According to proposed approach, among the senders 1-hop neighbors, forwarding nodes which are selected are only retransmit the broadcasting message. There are two ways for selection of forwarding nodes and either of one is used depending on the network conditions. The source node provides forwarding node retransmission as acknowledgement of reception of packet. If the source node not getting the retransmissions of its forwarding nodes, source node resend the packets until the maximum threshold will reach. For the simulation of this project we used the Microsoft .Net framework and our simulation results shows that proposed method performing well under the high transmission error rate. From the simulated results we claim that investigated approach for the broadcasting is more efficient as compared to the existing approaches.
An experimental analysis was included to study and investigate the mass transport behavior of cupric ions reduction as the main reaction in the presence of 0.5M H2SO4 by weight difference technique (WDT). The experiments were carried out by electrochemical cell with a rotating cylinder electrode as cathode. The impacts of different operating conditions on mass transfer coefficient were analyzed such as rotation speeds 100-500 rpm, electrolyte temperatures 30-60 , and cupric ions concentration 250-750 ppm. The order of copper reduction reaction was investigated and it shows a first order reaction behavior. The mass transfer coefficient for the described system was correlated with the aid of dimensionless groups as fo
... Show MoreIn the present study, semi – batch experiments were conducted to investigate the efficiency of ozone microbubbles (OMBs) in the treatment of aqueous dye solutions methylene orange under different reaction conditions such as effect of initial solution pH , ozone generation rate and initial MO-concentration. The results showed that the removal of MO by OMBs were very high at the acidic and alkaline media and upon increasing the generation rate of ozone from 0.498 to 0.83 mg/s, the removal efficiency dramatically increased from 75to 100% within 15 min. The rate of oxidation reaction followed a pseudo first- order kinetic model. The results demonstrated that OMBs is efficient in terms of the decline of methylene orange c
... Show MoreManufacturing high-efficiency polymeric materials to moderate fast neutrons by converting them into slow or thermal neutrons. These materials absorb thermal neutrons as well as gamma rays associated with neutrons. Materials of small mass number are used to slow down fast neutrons because neutrons have a high cross-section when they interact with these materials. Materials of high mass number absorb gamma rays. Polyurethane and epoxy were mixed in various ratios to create a blend to serve as neutrons shield, lead (Pb) was then added to the blend at weight percentages of 20%, 30%, 40%, 50%, and 70% to produce a polymer composite.
Polymeric materials reinforced with lead in various ratios were tested to select the best
... Show Morelar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Bag
The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreIn this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show More