Mobile ad hoc network is nothing but the temporary network which is having the collection of mobile nodes. Routing and broadcasting are major operations of MANET network. The major operation in ad hoc mobile network is the broadcasting which sometime results to storm problem of the broadcast if the forwarding mechanism is not properly designated. Thus the challenges in the MANET are to reduce the broadcasting redundancy and under high transmission error rate provides high delivery ratio. Hence in our proposed research, we are introducing and investigating the new mechanism of broadcasting called Dual Covered Broadcast. This method takes the broadcast redundancy advantage order to improve packet delivery ratio especially under environments where transmission error rate higher. According to proposed approach, among the senders 1-hop neighbors, forwarding nodes which are selected are only retransmit the broadcasting message. There are two ways for selection of forwarding nodes and either of one is used depending on the network conditions. The source node provides forwarding node retransmission as acknowledgement of reception of packet. If the source node not getting the retransmissions of its forwarding nodes, source node resend the packets until the maximum threshold will reach. For the simulation of this project we used the Microsoft .Net framework and our simulation results shows that proposed method performing well under the high transmission error rate. From the simulated results we claim that investigated approach for the broadcasting is more efficient as compared to the existing approaches.
The two body model of (Core+n) within the radial wave functions of the cosh potential has been used to investigate the ground state features such as the proton, neutron and matter densities, the root mean square (RMS) nuclear proton, neutron, charge and mass radii of unstable neutron-rich 14B, 15C, 19C and 22N nuclei. The calculated results show that the two body model with the radial wave functions of the cosh potential succeeds in reproducing neutron halo in these nuclei.
This paper presents an experimental and theoretical analysis to investigate the two-phase flow boiling heat transfer coefficient and pressure drop of the refrigerant R-134a in the evaporator test section of the refrigeration system under different operating conditions. The test conditions considered are, for heat flux (13.7-36.6) kW/m2, mass flux (52-105) kg/m2.s, vapor quality (0.2-1) and saturation temperature (-15 to -3.7) ˚C. Experiments were carried out using a test rig for a 310W capacity refrigeration system, which is designed and constructed in the current work. Investigating of the experimental results has revealed that, the enhancement in local heat trans
... Show MoreThe opportunistic multidrug resistance pathogen Pseudomonas aeruginosa has one or several flagella, and the numbers of these sophisticated machines are regulated by the flagellar regulator gene FleN. The flagellar hook gene FlgE is important for its synthesis, motility and tolerance to antibiotics. Bacteriahave resistance to antibiotics, especially to cephalosporin beta-lactam antibiotics. For the current study, 102 clinical specimens were collected and identified using routine laboratory tests and confirmed by Vitek-2 compact system. A total of 33 isolates of P. aeruginosa were identified. The antibiotic susceptibility test was done by the Vitek 2 Compact system. Flagellar gene detected by conventional PCR revealed that the FleN
... Show MoreA numerical model for Polypropylene 575 polymer melts flow along the solid conveying screw of a single screw extruder under constant heat flux using ANSYS-FLUENT 17.2 software has been conducted. The model uses the thermophysical properties such as Viscosity, thermal conductivity, Specific heat and density of polypropylene 575 that measured as a function of temperature, and residence time data for process simulation. The numerical simulation using CFD models for single screw extruder and the polymer extrusion was analysed for parameters such as (thermal conductivity, specific heat, density and viscosity) reveals a high degree of similarity to experimental data measured. The most important outcome of this study is that geometrical, parame
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
After Hamdallah and his success on the realization of this manuscript (a letter in detail what was said in the parents of the Prophet Ibn Kamal Pasha (d. 940 e) study and investigation I will review some of the results reached in the realization of this manuscript:
1. The hadiths mentioned in this manuscript are mostly placed or weak.
2 - We are not entitled to speak about the silence of the law for saying Almighty ﭽ ﮮ ﮯ ﮰ ﮱ ﯓ ﯔ ﯕ ﯖ ﯗ ﯘ ﯙ ﭼ Table: 101.
3 in which harm to our Holy Prophet وله تع ﮂ ﮃ ﮄ ﮅ ﮆ ﮈ ﮉ ﮊ ﮋ ﮌ ﮍ ﮎ ﭼ parties: 57.
4 Because the parents of the Prophet of the people of the period ordered them to God for the Almighty ﭽ ﯨ ﯩ ﯪ ﯫ ﯬ
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.