Periodontal disease is typically treated with mechanical debridement of the tooth surface. It may, however, be insufficient to eradicate pathogenic microorganisms on its own. Because of the microbial etiology of periodontitis, systemic or local antibiotic therapy is used as an adjunct treatment. The present study aimed to determine the effects of curcumin gel on Porphyromonas gingivalis. Eleven patients with stage II and III periodontitis were registered in the study. A double-blinded split-mouth design followed. Periodontal pockets were distributed into 2 groups; the test group received scaling and root planing along with curcumin gel, while the control group received scaling and root planing along with a placebo gel. Plaque index, probing pocket depth and relative attachment level were recorded with the collection of subgingival plaque samples at different time intervals for bacterial analysis using real-time time-polymerase chain reaction. Results showed a significant reduction in the bacterial outcomes in the test group. There was a significant improvement in the Plaque index, probing pocket depth and relative attachment level in the test group compared to the control group. On intra-group comparison, both groups showed a significant reduction of Plaque index and probing pocket depth with a more significant reduction in the test group, and only the test group showed a significant reduction of relative attachment level. A strong positive correlation of P.gingivalis with probing pocket depth and relative attachment level in the test group was estimated. Curcumin gel has an antibacterial effect against Porphyromonas gingivalis and showed a potent improvement in the outcomes of the periodontal parameters. Keywords: Curcumin gel, periodontal pocket, Porphyromonas gingivalis
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
The use of antibiotics (AB) in surgery focused in either treating established infection or to prevent suspected post-operative infection. Inappropriate use of antibiotic for treatment of patients with common infections is a major problem worldwide, with great implications with regards to cost of treatment and development of resistance to the antimicrobial agent. Moreover, antibiotics may often be dispensed without a clear clinical indication. This study was conducted to estimate the medication errors in using antibiotic for surgery patients which may effect their wound healing. A 260 patients with clean-contaminated and contaminated surgery were included from two teaching hospitals, 160 patient from Medical city hospital and 100 fro
... Show MoreDue to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. Th
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More