Periodontal disease is typically treated with mechanical debridement of the tooth surface. It may, however, be insufficient to eradicate pathogenic microorganisms on its own. Because of the microbial etiology of periodontitis, systemic or local antibiotic therapy is used as an adjunct treatment. The present study aimed to determine the effects of curcumin gel on Porphyromonas gingivalis. Eleven patients with stage II and III periodontitis were registered in the study. A double-blinded split-mouth design followed. Periodontal pockets were distributed into 2 groups; the test group received scaling and root planing along with curcumin gel, while the control group received scaling and root planing along with a placebo gel. Plaque index, probing pocket depth and relative attachment level were recorded with the collection of subgingival plaque samples at different time intervals for bacterial analysis using real-time time-polymerase chain reaction. Results showed a significant reduction in the bacterial outcomes in the test group. There was a significant improvement in the Plaque index, probing pocket depth and relative attachment level in the test group compared to the control group. On intra-group comparison, both groups showed a significant reduction of Plaque index and probing pocket depth with a more significant reduction in the test group, and only the test group showed a significant reduction of relative attachment level. A strong positive correlation of P.gingivalis with probing pocket depth and relative attachment level in the test group was estimated. Curcumin gel has an antibacterial effect against Porphyromonas gingivalis and showed a potent improvement in the outcomes of the periodontal parameters. Keywords: Curcumin gel, periodontal pocket, Porphyromonas gingivalis
The experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are app
... Show Moreالناصر، عامر عبد الرزاق عبد المحسن والكبيسي، صلاح الدين عواد كريم. 2018. إمكانية تبني الحوسبة السحابية الهجينة في الجامعات العراقية : دراسة تحليلية باستخدام أنموذج القبول التكنولوجي. مجلة الإدا
In this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo
... Show MoreA mathematical model has been introduced to investigate the effect of nuclear reaction constant ( A ), probability of the BEC ground state occupation Ω i, nD is the number density of deuteron (d) and the overall number of nuclei ND on the total nuclear d-d fusion rate (R). Under steady-state of the condensates of Bose-Einstein, the postulate of quantum theory and Bose-Einstein theory were applied to evaluate the total nuclear (d-d) fusion rate trapping in Nickel-metal The total nuclear fusion rate trapping predicts a strong relationship between astrophysical S-factor and masses of Nickel. The reaction rate trapping model was tested on three reaction d(d,p)T, d(d, n)3He and d(d, 4He)Q = 23.8MeV respectively. The reaction rate has described
... Show MoreImmune-mediated hepatitis is a severe impendence to human health, and no effective treatment is currently available. Therefore, new, safe, low-cost therapies are desperately required. Berbamine (BE), a natural substance obtained primarily from
This c
Abstract
Objective: the idea of this study to improve transdermal permeability of Methotrexate using eucalyptus oil, olive oil and peppermint oil as enhancers.
Method: eucalyptus oil (2% and 4%), peppermint oil (2% and 4%) and olive oil (2% and 4%) all used as natural enhancers to develop transdermal permeability of Methotrexate via gel formulation. The gel was subjected to many physiochemical properties tests. In-vitro release and permeability studies for the drug were done by Franz cell diffusion across synthetic membrane, kinetic model was studied via korsmeyer- peppas equation.
Result: the results demonstrate that safe, nonirritant or cause necrosis to rats' skin and stable till 60 days gel was successfully formulated.<
Non-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important rol
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in d
... Show More