Periodontal disease is typically treated with mechanical debridement of the tooth surface. It may, however, be insufficient to eradicate pathogenic microorganisms on its own. Because of the microbial etiology of periodontitis, systemic or local antibiotic therapy is used as an adjunct treatment. The present study aimed to determine the effects of curcumin gel on Porphyromonas gingivalis. Eleven patients with stage II and III periodontitis were registered in the study. A double-blinded split-mouth design followed. Periodontal pockets were distributed into 2 groups; the test group received scaling and root planing along with curcumin gel, while the control group received scaling and root planing along with a placebo gel. Plaque index, probing pocket depth and relative attachment level were recorded with the collection of subgingival plaque samples at different time intervals for bacterial analysis using real-time time-polymerase chain reaction. Results showed a significant reduction in the bacterial outcomes in the test group. There was a significant improvement in the Plaque index, probing pocket depth and relative attachment level in the test group compared to the control group. On intra-group comparison, both groups showed a significant reduction of Plaque index and probing pocket depth with a more significant reduction in the test group, and only the test group showed a significant reduction of relative attachment level. A strong positive correlation of P.gingivalis with probing pocket depth and relative attachment level in the test group was estimated. Curcumin gel has an antibacterial effect against Porphyromonas gingivalis and showed a potent improvement in the outcomes of the periodontal parameters. Keywords: Curcumin gel, periodontal pocket, Porphyromonas gingivalis
Abstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a
... Show MoreThe reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show More