The objective of this paper is to study the stability of SIS epidemic model involving treatment. Two types of such eco-epidemiological models are introduced and analyzed. Boundedness of the system is established. The local and global dynamical behaviors are performed. The conditions of persistence of the models are derived.
In this paper, we introduce the concept of Jordan –algebra, special Jordan –algebra and triple –homomorphisms. We also introduce Bi - –derivations and Annihilator of Jordan algebra. Finally, we study the triple –homomorphisms and Bi - –derivations on Jordan algebra.
-convex sets and -convex functions, which are considered as an important class of generalized convex sets and convex functions, have been introduced and studied by Youness [5] and other researchers. This class has recently extended, by Youness, to strongly -convex sets and strongly -convex functions. In these generalized classes, the definitions of the classical convex sets and convex functions are relaxed and introduced with respect to a mapping . In this paper, new properties of strongly -convex sets are presented. We define strongly -convex hull, strongly -convex cone, and strongly -convex cone hull and we proof some of their properties. Some examples to illustrate the aforementioned concepts and to cl
... Show MoreThe searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time. Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle to involve four types of binary code books (i.e. Pour when , Flat when , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s
... Show MoreIn this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
The steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreThis study aims to formulate an alternative solution for Formalin for preserving fish as study specimens for long periods. The main reason for finding a solution instead of formalin is to get rid of the negative effects of this solution on those who work with it, as well as to better preserve the bodies of fish. Hence, three new solutions were proposed to replace formalin. Thus, Formalin, in turn, may enter the composition of a small part of these solutions to give better results and for long periods of keeping specimens. All solutions prepared in this study participated in being acidic as in formalin. Two solutions succeeded in compensating for the use of formalin in preserving fish
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show More