Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreOrthogonal Frequency Division Multiplexing (OFDM) is one of recent years multicarrier modulation used in order to combat the Inter Symbol Interference (ISI) introduced by frequency selective mobile radio channel. The circular extension of the data symbol, commonly referred to as cyclic prefix is one of the key elements in an OFDM transmission scheme. This paper study The influence of the cyclic prefix duration on the BER performance of an OFDM-VCPL (Orthogonal frequency division multiplexing - Variable Cyclic Prefix Length) system and the conventional OFDM system with frame 64-QAM modulation is evaluated by means of computer simulation in a multipath fading channel. The adaptation of CP is done with respect to the delay spread estimation
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-
... Show MoreThe purpose of the paper is to tind the degree of the approximation of a functions f be bounded , measurable and defined
in interval [a,h]by Bernstein polynomial in LP space 1 $ p < oo by
using Ditzian-Totik modulus of smootlmess and k 1n average modvlus of smoothness.
In this study, a total of 209 individuals of leeches were collected from Al-Hindyia River / Babil Province. 116 individuals were identified as Erpobdella octaculata (Linnaeus, 1758), 50 individuals as Erpobdella punctata (Leidy,1870) and 43 individuals as Hemiclepsis marginata (Müller, 1774). Four samples were collected monthly during a period from February to June 2018. Some physical and chemical water properties were also examined, including air and water temperature, potential of hydrogen pH, Electrical Conductivity EC, Total Dissolved Solid TDS, Dissolved Oxygen DO, and the Biological Oxygen Demand BOD₅. Air and water temperature were r
... Show MoreThis study was done to investigate the antibacterial effect of the three types of Lawsonia inermis linn (henna) leaf extracts (water, methanol and chloroform) in different concentrations (40, 80, 120) mg/ml against four strains of bacteria (Staphyllococus aureus, Bacillus subtilis, Pseudomonos aerogenosa and Eschorichia coli) in vitro using ager well diffusion method. Water extract showed the highest antibacterial activity, followed by methanol extract, while the chloroform extract showed the lowest activity. The maximum inhibition zone of water extract was observed against , Pseudomonos aerogenosa (25mm) in the concentration (120) mg/ml, while the minimum zone of inhibition (9mm) was in Bacillus subtilis in the same concent
... Show More