Aromaticity reversals between the electronic ground (S0) and low-lying singlet (S1, S2) and triplet (T1, T2, T3) states of naphthalene and anthracene are investigated by calculating the respective off-nucleus isotropic magnetic shielding distributions using complete-active-space self-consistent field (CASSCF) wavefunctions involving gauge-including atomic orbitals (GIAOs). The shielding distributions around the aromatic S0, antiaromatic S1 (1Lb), and aromatic S2 (1La) states in naphthalene are found to resemble the outcomes of fusing together the respective S0, S1, and S2 shielding distributions of two benzene rings. In anthracene, 1La is lower in energy than 1Lb, and as a result, the S1 state becomes aromatic, and the S2 state becomes antiaromatic; the corresponding shielding distributions are found to resemble extensions by one ring of those around the S2 and S1 states in naphthalene. The lowest antiaromatic singlet state of either molecule is found to be significantly more antiaromatic than the respective T1 state, which shows that it would be incorrect to assume that the similarity between the (anti)aromaticities of the S1 and T1 states in benzene, cyclobutadiene, and cyclooctatetraene would be maintained in polycyclic aromatic hydrocarbons.
This research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show MoreIn this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreSIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and
... Show MoreThis research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show MoreToxoplasma gondii is an opportunistic parasite in immune-compromised persons. The prevalence of toxoplasmosis in psoriasis patients is investigated. In addition, the treatment effect on psoriasis patients infected with toxoplasmosis through evaluating Tumor Necrosis Factor-α (TNF-α) cytokine levels is studied. Blood samples were collected from 130 individuals who involved 60 control samples and 70 samples with psoriasis. They attended Medical City Hospital in Baghdad province from October 2017 - February 2018. Then, the anti- T. gondii antibodies (IgM and IgG) and TNF- α in the sera were determined via the enzyme linked immune-sorbent assay. The highe
... Show MoreBaylisascaris procyonis is a helminth parasite of raccoons Procyon lotor and represents a health concern in paratenic hosts, including humans and diverse domestic and wildlife species. In North America the helminth is expanding its geographic range. To better understand patterns of infection in the Ozark region of the USA, raccoons (n = 61) were collected in 2013-2014 from five counties in Missouri and Arkansas, USA and necropsied. We documented B. procyonis in all surveyed locations. The overall prevalence of B. procyonis was 44.3 % (95 % CI = 31.9 - 57.4) and was significantly higher in females than males. There were also significant differences in prevalence among raccoons sampled
Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI