Gas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mixtures at different compositions is proposed. The van der Waals-Platteeuw thermodynamic theory coupled with the Peng-Robinson equation of state and Langmuir adsorption model are employed in the proposed model. The experimental measurements generated using a cryogenic sapphire cell for the pressure and temperature ranges of (5-25) MPa and (275.5-292.95) K, respectively, were used to evaluate the accuracy of this model. The resulting data show that increasing nitrogen mole percentage in the gas mixtures results in decreasing of equilibrium hydrate temperatures. The deviations between the experimental and predictions are discussed. Furthermore, the cage occupancies for the gas mixtures in hydrate have been evaluated. The results demonstrate an increase in the cage occupancy for both the small and large cavities with pressure.
This study relates to the estimation of a simultaneous equations system for the Tobit model where the dependent variables ( ) are limited, and this will affect the method to choose the good estimator. So, we will use new estimations methods different from the classical methods, which if used in such a case, will produce biased and inconsistent estimators which is (Nelson-Olson) method and Two- Stage limited dependent variables(2SLDV) method to get of estimators that hold characteristics the good estimator .
That is , parameters will be estim
... Show More
Abstract:
The models of time series often suffer from the problem of the existence of outliers that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of
... Show MoreThe research aims to analysis of the current financial crisis in Iraq through knowing its causes and then propose some solutions that help in remedy the crisis and that on the level of expenditures and revenues, and has been relying on the Federal general budget law of the Republic of Iraq for the fiscal year 2016 to obtain the necessary data in respect of the current expenditures and revenues which necessary to achieve the objective of the research , and through the research results has been reached to a set of conclusions which the most important of them that causes of the current financial crisis in Iraq , mainly belonging to increased expenditures and especially the current ones and the lack of revenues , especially non-oil o
... Show MoreThe importance of this research is to clarify the nature and the relationship between the indicators of financial policy and banking stability in Iraq, as well as to find a composite index reflects the state of banking stability in Iraq in order to provide an appropriate means to help policymakers in making appropriate decisions before the occurrence of financial crises.
Hence, the problem of research is that the fiscal policy has implications for the macro economy and does not rule out its impact on banking stability. Moreover, the central bank does not possess a single indicator that reflects the stability of the banking system, rather than the scattered indicators that depend o
... Show MoreHypercholesterolemia is a predominant risk factor for atherosclerosis and cardiovascular disease (CVD). The World Health Organization (WHO), ) recommended reducing the intake of cholesterol and saturated fats. On the other hand, limited evidence is available on the benefits of vegetables in the diet to reduce these risk factors, so this research was conducted to compare the hypolipidemic effect between the extracts of two different types of Iraqi peppers, the fruit of the genus Capsicum traditionally known as red pepper extract (RPE), and Piper nigrum as black pepper extract (BPE), respectively, in different parameters and histology of the liver of the experimental animals. The red pepper was extracted by ethyl acetate, while the black pepp
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show More