In this paper, the effect of temperature on the charge transfer rate of dye (N3) in contact with ZnS semiconductors is discussed and studied when electrons move from the excited N3 dye to the conduction band of ZnS based on quantum shift theory. In a heterogeneous system, the energy levels are assumed to be continuous, and the N3-ZnS system is surrounded by a variety of polar solvent media. The transition energy of the N3/ZnS heterojunction was calculated using seven different solvents at room temperature, considering the refractive index and dielectric constant of the solvents and the ZnS semiconductor, respectively. The charge-transport reaction rate was calculated over different temperature ranges (300, 310 and 320 K) to study the influence of temperature on the charge transfer reaction rate. The probability of charge transport is influenced by the transition energy, which depends on the polar medium, and the probability of transfer increases as the transition energy decreases. The charge transfer rate, which is strongly affected by temperature, increases with increasing temperature and vice versa. The dye (N3)/semiconductor (ZnS) heterojunction system has a high probability of charge transport from the excited N3 dye to the conduction band of ZnS with polar morpholine media because the transition energy is lower than the low charge transfer that occurs in the system with polar methanol solvent, which has a large transfer energy. However, the rate increases with increasing temperature and coupling strength
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreWalt Whitman adds a poetic twist to the relationship of man’s body, soul with the universe. His inspiration in writing his elegy, "When Lilacs Last in the Dooryard Bloom'd," draws on aesthetico-political resources. Major amongst these is his leaning towards the American Transcendentalist idea of the "Over-Soul". The basic topoi in his poems is thus his identification of nature with the soul of man. The idea of the Over-Soul sheds light on the three stages of human loss: suffering, despair, and compensation. Whitman witnessed two political events, the outbreak of the civil war and Abraham Lincoln's death, which were of a particular importance to his life and work: they helped him shape a form and thematic concerns of his own. Buil
... Show Moreيجترح الشاعر والت ويتمان انعطافة شعرية لعلاقة الانسان، جسدا وروحا، مع العالم. فهو يستقي الهامه في كتابته لمرثاته (عندما اينع الليلك اخيرا في فناء الدار) من مصادر جمالية واخرى سياسية. ولعل ابرزها تأثره بفكرة الروح الكوني كما جرى طرحها في سياق فلسفة التسامي الامريكية. يظهر ذلك جليا في قصائده التي تتخذ من تماهي روح الانسان مع الطبيعة موضوعة لها. ان فكرة الروح الكوني تلقي ههنا بظلالها على الرتب الانسانية التي
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show MoreIn the current research, the work concentrated on studying the effect of curvature of solar parabolic trough solar collector on wind loading coefficients and dynamic response of solar collector. The response of collector to the aerodynamic loading was estimated numerically and experimentally. The curvature of most public parabolic trough solar collectors was investigated and compared. The dynamic response of solar collector due to wind loading was investigated by using numerical solution of fluid-structure interaction concept. The experimental work was done to verify the numerical results and shows good agreement with numerical results. The numerical results were obtained by using finite element software package (ANSYS 14). It was found
... Show MoreAzo dyes like methyl orange (MO) are very toxic components due to their recalcitrant properties which makes their removal from wastewater of textile industries a significant issue. The present study aimed to study their removal by utilizing aluminum and Ni foam (NiF) as anodes besides Fe foam electrodes as cathodes in an electrocoagulation (EC) system. Primary experiments were conducted using two Al anodes, two NiF anodes, or Al-NiF anodes to predict their advantages and drawbacks. It was concluded that the Al-NiF anodes were very effective in removing MO dye without long time of treatment or Ni leaching at in the case of adopting the Al-Al or NiF-NiF anodes, respectively. The structure and surface morphology of the NiF electrode were inves
... Show MorePoly aniline-formaldehyde/chitosan composite (PAFC) was prepared by the in situ polymerization method. It was characterized by FTIR spectroscopy in addition to SEM, EDS and TGA techniques. The adsorption kinetics of malachite green dye (MG) on (PAFC) were studied for various initial concentrations (20, 30 and 40) mg/L at three temperatures (308, 313 and 318) K. The influence factors of adsorption; adsorbent dose, contact time, initial concentration and temperature were investigated. The kinetic studies confirmed that adsorption of MG obeyed the pseudo-second-order model and the adsorption can be controlled through external mass transfer followed by intraparticle diffusion mass transfer. A study of th