The purpose of this study is to investigate the research on artificial intelligence algorithms in football, specifically in relation to player performance prediction and injury prevention. To accomplish this goal, scholarly resources including Google Scholar, ResearchGate, Springer, and Scopus were used to provide a systematic examination of research done during the last ten years (2015–2025). Through a systematic procedure that included data collection, study selection based on predetermined criteria, categorisation based on AI applications in football, and assessment of major research problems, trends, and prospects, almost fifty papers were found and analysed. Summarising AI applications in football for performance and injury predictions, predicting injuries and analysing related risks, and evaluating player performance using AI models are the three main topics highlighted in the study. This study highlights the use of AI algorithms in the sports field to predict injuries and predict team or player performance, especially in football.
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More