This book includes three main chapters: 1. Functions & Their Derivatives. 2. Minimum, Maximum and Inflection points. 3. Partial Derivative. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
The present paper investigates the role of fear and predator dependent refuge in the prey-predator system. The system describes the interaction between prey and a stage structure of predator that incorporates Holling II functional response. The predator splits into two compartments immature (juvenile) and mature (adult). The mature predators can hunt and reproduce but this capability is not found in the immature predators, the immature depend on their parents. The growth rate of prey decreases due to the existence of mature predators. The existence, uniqueness, and boundedness of the solution of the system are investigated. Three equilibrium points of the system are determined. The local stability of the system is studied. The global stabil
... Show MoreLet M be a n-dimensional manifold. A C1- map f : M M is called transversal if for all m N the graph of fm intersect transversally the diagonal of MM at each point (x,x) such that x is fixed point of fm. We study the minimal set of periods of f(M per (f)), where M has the same homology of the complex projective space and the real projective space. For maps of degree one we study the more general case of (M per (f)) for the class of continuous self-maps, where M has the same homology of the n-dimensional sphere.
Abstract
The research attempted to find an explanation and solution to a problem related to the fluctuation and decrease In the rate of return on assets for the research sample banks during the duration of the research, The search started from the hypothesis that, The effect of salary Domiciliation on the banking profitability of a sample of Iraqi banks participating in the salary settlement system for the period (2016-2019),The research used the descriptive historical approach, the quantitative analytical approach and the statistical approach. The research reached a set of conclusions, the most important of which is The effect of salary Domiciliation on banking profitability was achieved in three banks
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreThe soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.