This paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast estimations, the SMC scheme is constructed in order to compensate estimation errors in both states and disturbance. Finally, the tracking efficiency is verified by carrying out many simulations on the application example of flexible joint robot (FJR). Besides, comparing the proposed method with the standard GPIO based SMC method is performed.
in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete. Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, rth moment, mean, variance, Moment Generating Function, Skewness, kurtosi
... Show MoreIn this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
This paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show More