ABSTRACT: Oxadiazole ring is a heterocyclic molecule with an oxygen and two nitrogen atoms spread throughout its five-membered structure. There are four different isomers that have been discovered, Because of their wide applications in a range of sectors, including medications . Some of these biological activity are; anticonvulsant capacity, anticancer as well, antibacterial, antiviral, antifungal, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and anti-inflammatory, are just some of the therapeutic uses that have drawn attention to drug candidates containing an oxadiazole moiety. This review, we will examine the various methods of oxadiazole synthesis. The molecular docking of some oxadiazole compounds has been studied to investigate the active derivatives and to evaluate their activity. The synthesis of the oxadiazole ring has sparked a lot of attention since then. A large number of oxadiazole derivatives, as well and methods, were reported New antimicrobial drugs have been developed from a number of different areas in recent years in an effort to reduce the prevalence of drug-resistant bacteria. Furthermore, this review touches upon the importance of structural modification in fine-tuning the biological activities of 1,3,4-oxadiazole derivatives. By altering the substituents and the position of functional groups, researchers can tailor the pharmacological properties to target specific diseases or conditions, making them highly versatile and attractive in drug discovery.
This review covers recent progress in the synthesis of curcumin and the bioactivity of semisynthetic and synthetic analogs of curcumin. The review also shows how curcumin is a useful intermediate for the synthesis of more complex organic molecules; historical perspective; the process of preparing the metal complexes and characterization the produced complexes using various spectral and other techniques; shows the importance of curcumin and its derivatives for their potential applications in medical devices and broad-spectrum of medical application such as antibiotic ointment, alternative therapeutics, antifungal, and antibacterial activities
Background: Maxillary sinusitis can arise after sinus floor elevation surgery and should be treated immediately to prevent further complications which included dental implants failure, graft lost, and oro-antral fistula. This is the first systematic review to assess the incidence, causes, and treatment of sinusitis after sinus lift surgery. Materials and methods: An electronic search included MEDLINE (PUBMED) data base site was carried out for articles involving development of sinusitis after sinus lift surgery from September 1997 up to April, 8, 2017. The search was done and reviewed by two independent authors. Results: The total results of electronic search were (182) abstracts and articles, the extracted articles which involved develo
... Show MoreBiped robots have gained much attention for decades. A variety of researches have been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. This paper discusses the main challenges encountered in the design of biped robots, such as modeling, stability and their walking patterns. The subject is difficult to deal with because the biped mechanism intervenes with mechanics, control, electronics and artificial intelligence. In this paper, we collect and introduce a systematic discussion of modelin
MT Suhail, SA Hussein, MN Abdulhussein, WQ Abdaullateef, M khairallah Aid…, Migration Letters, 2024
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Carbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreIn the field of implantology, peri-implantitis is still a common complication of implant failure. Similar to periodontal disease, this kind of pathological condition is characterized by inflammation of the tissues surrounding dental implants or fillings. The sources of infection have been shown to be chronic periodontitis and poor maintenance of the communion. A thorough examination of the intricate components of peri-implantitis was sought in this review in order to identify common characteristics of the disease with regard to bacteria, biofilm formation, host immunological responses, diagnostic tools, and therapeutic treatments. The aim of this study was to provide a detailed overview of the different bacterial species associated
... Show More