A simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration in the range of 2.0-10 µmol/L with a limit of detection 0.35 µmol/L, 0.9981 (R2), and 2.0-12 µmol/L with a limit of detection 0.4 µmol/L and 0.9973 (R2) for measuring cells 1 and 2, respectively. The intra-day precision for three serial estimations of 5.0 and 9.0 µmol/L of MBH exhibited an RSD % of 0.23 % and 0.77 % and 0.68 % and 0.13 %, for cell 1 & 2, respectively. While the inter-day precision for three serials of three days exhibited an RSD % of 0.03 % and 0.77 % and 0.11 % and 0.07 %, for measuring cells 1 & 2, respectively. The accuracy of the developed method has expressed as an error % (E%) and a Rec % (recovery percentage), which was between 100.35 to 101.15 and 99.70 to 101.56 for cell 1 and cell 2, respectively. The present flow injection method has shown no interference effect from the common excipients and permits quantitively determination of 60 samples per hour. The developed method was successfully applied for the quantitative determination of MBH in different tablets containing 135 mg with excellent recovery percentage.
In this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.
Current study obtained (75) isolate of Pseudomonas aeruginosa collected from different cases included : 28 isolates from otitis media, 23 isolates from burn infections, 10 isolates from wound infections, 8 isolates from urinary tract infections and 6 isolates from blood, during the period between 1/9/2014 to 1/11/2014
The result revealed that the tox A gene was present in 54 isolates (72%) of Pseudomonas aeruginosa. The gel electrophoresis showed that the molecular weight of tox A gene was 352 bp. The result shows 17 isolates (60.71%) from otitis media has tox A gene, 1
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
In the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show More