A simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration in the range of 2.0-10 µmol/L with a limit of detection 0.35 µmol/L, 0.9981 (R2), and 2.0-12 µmol/L with a limit of detection 0.4 µmol/L and 0.9973 (R2) for measuring cells 1 and 2, respectively. The intra-day precision for three serial estimations of 5.0 and 9.0 µmol/L of MBH exhibited an RSD % of 0.23 % and 0.77 % and 0.68 % and 0.13 %, for cell 1 & 2, respectively. While the inter-day precision for three serials of three days exhibited an RSD % of 0.03 % and 0.77 % and 0.11 % and 0.07 %, for measuring cells 1 & 2, respectively. The accuracy of the developed method has expressed as an error % (E%) and a Rec % (recovery percentage), which was between 100.35 to 101.15 and 99.70 to 101.56 for cell 1 and cell 2, respectively. The present flow injection method has shown no interference effect from the common excipients and permits quantitively determination of 60 samples per hour. The developed method was successfully applied for the quantitative determination of MBH in different tablets containing 135 mg with excellent recovery percentage.
In this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s
... Show MoreThe production of power using the process of pressure–retarded osmosis (PRO) has been studied both experimentally and theoretically for simulated sea water vs. river water and deionized water under two cases: the first is for simulated real conditions of sea water and river water and second under low brine solution concentration to examine the full profile of the power- pressure. The influence of concentration polarization (CP) on water flux has been examined as well.
Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreMany authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreNowadays, university education stands in front of both students who feel they are weak and teachers who are addicted to using traditional and dependent teaching. This has led to have negative repercussions on the learner from different aspects, including the mental aspect and the academic achievement process. Therefore, the present research is concerned with finding a new teaching method that adopts the motivation by the fear of failure technique. Thus, the study aims to examine the effect of adopting this method on students’ academic achievement. To achieve this aim, an experimental method was used, and an achievement test was built for the curriculum material of level two students. The pretest test was applied on 17 male and female s
... Show More