A Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength ( 40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one hour at 500 °C and 600 °C, and two hours at 500 °C). The flexural behavior of the simply supported deep beams, subjected to the two concentric loads in the middle third of the beam, was investigated with ABAQUS software. The results showed that the laced reinforcement with an inclination of 45˚ improved the structural behavior of the deep beams, and the lacing resisted failure and extended the life of the model. The optimal structural response was observed for the specimens. The laced reinforcement improved the failure mode and converted it from shear to flexure-shear failure. The parametric study showed that the lacing bars remarkably improved the strength of the deep beams and they were not affected more by the steady-state temperature and duration. Furthermore, a greater increase in load-carrying capacity was associated with an increase in the flexural diameter of approximately 12 and 16 mm by approximately 24.77% and 87.61%, respectively, compared to the reference LRC deep beams.
Al-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed th
... Show MoreTwenty binary liquid crystalline mixture diagrams were investigated with polarizing microscope and differential scanning calorimeter (DSC). Four binary mixture diagrams were constructed to identify the smectic phase which is found to be the same in all components of the homologous series (4-n-alkoxy -2, 3, 5, 6-tetra methyl-4-n-alkoxy azo benzene) (nPA4M). The fifth binary mixture diagram was between the (6PA4M) and the reference liquid crystal compound, terephthlylidene-bis (4-n-butylanaline) (TBAA) to identify the type of smectic mesophase of these compounds, and the results obtained were compared with the literature. To study the effect of the 4 methyl lateral groups on the thermotropic behavior of the (nPA4M) homol
... Show MoreThe present study investigated the impact of fuel kind on the emitted emissions at the idling period. Three types of available fuels in Iraq were tested. The tests conducted on ordinary gasoline with an octane number of 82, premium gasoline with an octane number of 92, and M20 (consist of 20% methanol and 80% regular gasoline). The 2 liters Mercedes-Benz engine was used in the experiments.
The results showed that engine operation at idle speed emits high levels of CO, CO2, HC, NOx and noise. The produced emission levels depend highly on fuel type. The premium gasoline (ON=92) represents the lower emissions level except for noise at all idling speed. Adding methanol to ordinary gasoline (ON=82) showed high levels of emi
... Show MoreStrengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show More
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreThe use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, a
... Show MoreAn experimental study is carried out on the effect of vortex generators (Circular and square) on the flow and heat transfer at variable locations at (X = 0.5, 1.5, 2.5 cm) ahead of a heat exchanger with Reynolds number ranging from 62000< Re < 125000 and heat flux from 3000 ≤ q ≤ 8000 W/m2 .
In the experimental investigation, an apparatus is set up to measure the velocity and temperatures around the heat exchanger.
The results show that there is an effect for using vortex generators on heat transfer. Also, heat transfer depends on the shape and location. The circular is found t
... Show MoreThis paper presents theoretical parametric study of the curvature ductility capacity for reinforced concrete column sections. The study considers the behavior of concrete and reinforcing steel under different strain rates. A computer program has been written to compute the curvature ductility taking into account the spalling in concrete cover. Strain rate sensitive constitutive models of steel and concrete were used for predicting the moment-curvature relationship of reinforced concrete columns at different rate of straining. The study parameters are the yield strength of main reinforcement, yield strength of transverse reinforcement, compressive strength of concrete, spacing of ties and the axial load. The results indicated that hi
... Show More