Because of Cadmium selenide quantum dots (CdSe quantum dots) has a tuning energy gap in the visible light range, therefore; it is provided a simple theoretical model for the absorption coefficient of CdSe quantum dots, where the absorption coefficient determines the extent to which the light of a material can penetrate a specific wavelength before it is absorbed. CdSe quantum dots have an energy gap can be controlled through two effects: the temperature and the dot size of them. It is found that; there is an absorption threshold for each directed wavelength, where CdSe quantum dots begin to absorb the visible spectrum at a size of 1.4 nm at room temperature for a directed wavelength 300 nm. It has been observed that; when the wavelength is increasing its absorption threshold is increased. For wavelengths (400, 500, 600) nm, the absorption thresholds for each quantum sizes are (1.8, 2.2. 3.2)nm respectively. On the other hand, a rising of the temperature led to reduces the absorption coefficient value, that at 400 K for all quantum sizes, the absorption coefficient increases >2000cm−1(According to the directed wavelength) than it is at 0 K. CdSe quantum dots can be considered as one of the most promising materials because it has a tuning gap for the visible wavelengthsfor different applications, such as light-emitting diodes in different colors of the visible spectrum. It is found that; there is a good agreement between our theoretical calculations and experimental results.
Quantum dots (QDs) of cadmium sulfide (CdS) was prepared by chemical
reaction method with different potential of hydrogen (pH) values. The
morphological and optical measurements of cadmium sulfide QDs were considered
by atomic force microscopy (AFM), ultraviolet-visible (UV-VIS.) and
photoluminescence (PL) spectrometer respectively. The energy gap (Eg) was
calculated from photoluminescence spectra were found to be about 2.7, 2.6 and 2.5
eV at pH values 8, 10 and 12 respectively for CdS QDs. The decreasing of energy
gaps is rises from the effect the pH solution increases, which in turn leads to the
shifted of the PL spectrum toward red shifted, which creates the energy bands at
surface states are shallow bands.
In this study, an easy, low-cost, green, and environmentally
friendlier reagents have been used to prepare CdS QDs, in chemical
reaction method by mixed different ratio of CdO and sulfur in
paraffin liquid as solvent and oleic acid as the reacting media in
different concentration to get the optimum condition of the reaction
to formation CdS QDs. The results give an indication that the
behavior is at small concentration of 4ml of the oleic acid is best
concentration which give CdS QDs of small about to 9.23 nm with
nano fiber configuration.
The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
The excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MoreWater quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show MoreQuantum dots of CdSe, CdS and ZnS QDs were prepared by chemical reaction and used to fabricate organic quantum dot hybrid junction device. QD-LEDs were fabricated using ITO/TPD: PMMA/CdSe/Al, ITO/TPD: PMMA/CdS/Al and ITO/TPD: PMMA/ZnS/Al QDs devices which synthesized by phase segregation method. The hybrid white light emitting devices consists, of two-layers deposited successively on the ITO glass substrate; the first layer was of N, N’-bis (3-methylphenyl)-N, N’-bis (phenyl) benzidine (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers in ratio 1:1, while the second layer was 0.5wt% from each type of the (CdSe, CdS and ZnS) QDs for each device.The optical properties of QDs were characterized by UV-Vis. and photolum
... Show More The Influence of annealing temperature on the optical properties of (CuInSe2) thin films was studied. Thermal evaporation in vacuum technique has been used for films deposited on glass substrates, these films were annealed in vacuum at (100C°, 200C°) for (2 hours). The optical properties were studied in the range (300-900) nm. The obtained results revealed a reduction in energy band gap with annealing temperature . optical parameters such as reflectance, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant, skin depth and optical conductivity are investigated before and after annealing. It was found that all these parameters were affected by annealing temperature.
Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show More