Because of Cadmium selenide quantum dots (CdSe quantum dots) has a tuning energy gap in the visible light range, therefore; it is provided a simple theoretical model for the absorption coefficient of CdSe quantum dots, where the absorption coefficient determines the extent to which the light of a material can penetrate a specific wavelength before it is absorbed. CdSe quantum dots have an energy gap can be controlled through two effects: the temperature and the dot size of them. It is found that; there is an absorption threshold for each directed wavelength, where CdSe quantum dots begin to absorb the visible spectrum at a size of 1.4 nm at room temperature for a directed wavelength 300 nm. It has been observed that; when the wavelength is increasing its absorption threshold is increased. For wavelengths (400, 500, 600) nm, the absorption thresholds for each quantum sizes are (1.8, 2.2. 3.2)nm respectively. On the other hand, a rising of the temperature led to reduces the absorption coefficient value, that at 400 K for all quantum sizes, the absorption coefficient increases >2000cm−1(According to the directed wavelength) than it is at 0 K. CdSe quantum dots can be considered as one of the most promising materials because it has a tuning gap for the visible wavelengthsfor different applications, such as light-emitting diodes in different colors of the visible spectrum. It is found that; there is a good agreement between our theoretical calculations and experimental results.
These days, the world is facing a global environmental and sustainability problem due to the increasing generation of large amounts of waste through construction and demolition work, which causes a serious problem for the environment. Therefore, this research was conducted to get rid of the waste disposal problems, including old glass and concrete, which were used as recycled fine aggregates. Seven different mixtures were prepared. The first mixture was with the used sand, which is glass sand, and it was adopted as a reference mixture (ORPC), and three mixtures were prepared for each of the recycled materials (waste concrete and glass) and partially replaced by glass sand in different proportions (25, 50, and 75) %. Some
... Show MoreInfertility is one of the types of diseases that occur in the reproductive system. Obesity is a state that can be occurred due to excessive fats, the progression in obesity stage results in a change in adipose tissue and the development of chronic inflammation, endocrine glands disorders and women’s reproductive system, and also increase the infection with covid-19. The study aimed to investigate the effect of the obesity, lipid-profile, and IL-6 on hormones-dysregulation in infertile-women with COVID-19 complications. The current study included 70 samples: 50 infertility-women-with-covid-19-infected, 20 healthy-women/control, the ages of both patients and healthy subjects were selected within the range 18-34 years. Levels of FBS, LH,
... Show MoreObjective(s): Ramadan is the Holy month of the Muslims, where they are required to abstain from food and drinks
from dawn till the beginning of night. This study was conducted in Ramadan to investigate the effect of fasting on
hematological incidences, lipid profile, renal and liver function tests among healthy adult males.
Methodology: The present study was carried out in Ramadan – 1431 of Higira (August-September 2010). The study
sample was 56 healthy adult males. Five samples of blood were taken at five intervals (Before, at day 1, 15, 28 and
after Ramadan). Estimation was done for hematological markers, (hemoglobin, white blood cells count, platelet
count); renal function tests (blood urea, serum uric acid, serum
This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.
Experimental study on the effect of cylindrical hollow cathode, working pressure and magnetic field on spatial glow distribution and the characteristics of plasma produced by dc discharge in Argon gas, were investigated by image analyses for the plume within the plasma. It was found that the emission intensity appears as a periodic structure with many peaks appeared between the electrodes. Increasing the pressure leads to increase the number of intensity peaks finally converted to continuous form at high pressure, especially with applied of magnetic field, i.e. the plasma is more stable with the presence of magnetic field. The emission intensity study of plasma showed that the intensity has a maximum value at 1.07 mbar pressure and decre
... Show MoreThe aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were
The development of the perforated fin had proposed in many studies to enhance the heat transfer from electronic pieces. This paper presents a novel derivative method to find the temperature distribution of the new design (inclined perforated) of the pin fin. Perforated with rectangular section and different angles of inclination was considered. Signum Function is used for modeling the variable heat transfer area. Set of parameters to handle the conduction and convection area were calculated. Degenerate Hypergeometric Equation (DHE) was used for modeling the Complex energy differential equation and then solved by Kummer’s series. In the validation process, Ansys 16.0-Steady State Thermal was used. Two geometric models were consider
... Show MoreIn this paper, the effect of temperature on the charge transfer rate of dye (N3) in contact with ZnS semiconductors is discussed and studied when electrons move from the excited N3 dye to the conduction band of ZnS based on quantum shift theory. In a heterogeneous system, the energy levels are assumed to be continuous, and the N3-ZnS system is surrounded by a variety of polar solvent media. The transition energy of the N3/ZnS heterojunction was calculated using seven different solvents at room temperature, considering the refractive index and dielectric constant of the solvents and the ZnS semiconductor, respectively. The charge-transport reaction rate was calculated over different te
The fluorescence and absorption spectra of Fluoranthene dissolved in
cyclohexane and ethanol were studied and analyzed. The effect of the
concentration of this molecule and the polarity of the solvents on the spectral
shifts and on relative intensity has been investigated. A computational program
was written in order to convert the spectra from grapher to data. Some
photophysical parameters such as oscillator strength and quantum efficiency have
been calculated. Fluorescence quantum efficiency of Fluoranthene was measured
relative to Quinine Sulfate (QS) in 1N H2SO4. The obtained values were (0.5) in
cyclohexane and (0.45) in ethanol