A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results show that the proposed system has obtained good results and these results are equal to 86.36%, 49.69%, and 77.65% for detection rate, false alarm rate and accuracy respectively. These results are considered as a better result when it is compared with the other previous basic algorithms. It is possible to conclude that DNA sequence has potential for NIDS solution and it has potential improvement using a better encoding method.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show MoreObjective. This study aimed to evaluate the orthodontic bond strength and enamel-preserving ability of a hydroxyapatite nanoparticles-containingself-etch system following exposure to various ageing methods. Materials and Methods. Hydroxyapatite nanoparticles (nHAp) were incorporated into an orthodontic self-etch primer (SEP, Transbond™ plus) in three different concentrations (5%, 7%, and 9% wt) and tested versus the plain SEP (control) for shear bond strength (SBS), adhesive remnant index (ARI) scores, and enamel damage in range-finding experiments using premolar teeth. The best-performing formulation was further exposed to the following four artificial ageing methods: initial debonding, 24 h water storage, one-month water stora
... Show MoreMobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner, Taylor manner and block- by- block(2, 3, 5).