Both type 1 diabetes and type 2 diabetes have a genetic component, with over 60 chromosomal regions related to type 1 diabetes and over 200 connected with type 2 diabetes at significant genome-wide levels. Numerous single nucleotide polymorphisms in the RETN gene and genetic variables can account for up to 70% of the variations in circulating resistin levels. The RETN polymorphism has been linked in numerous studies to obesity, insulin sensitivity, type 2 diabetes, and cerebrovascular illness. Our objective is to compare this RETN gene 3ʹ-untranslated region polymorphism in type 1 diabetes and type 2 diabetes Iraqi patients. We choose 51 type 1 diabetes and 52 type 2 diabetes patients against 50 healthy subjects (control group) to investigate the comparative RETN gene polymorphisms in patients with type 1 diabetes and type 2 diabetes, using conventional polymerase chain reaction. The present study revealed statistically there was no significant increase in CC, CG, and GG genotypes (with Odd Ratio 1.43, 0.82, and 0.62 respectively) in type 1 diabetes, and statistically there was no significant increase in CC, CG, and GG genotypes (with Odd Ratio 0.68, 1.02 and 1.97 respectively) in type 2 diabetes as compared to the control group. Also, we found statistically there was no significant increase in C and G alleles in type 1 diabetes and type 2 diabetes groups as compared to the control group. The findings suggest that the CC genotype and C allele in RETN gene 3ʹ-untranslated region polymorphism rs1862513 increase the risk of type 1 diabetes compared to CG and GG genotypes, and the G allele in this gene increases the risk of type 2 diabetes in Iraqi patients.
The electrical performance of bottom-gate/top source-drain contact for p-channel organic field-effect transistors (OFETs) using poly(3-hexylthiophene) (P3HT) as an active semiconductor layer with two different gate dielectric materials, Polyvinylpyrrolidone (PVP) and Hafnium oxide (HfO2), is investigated in this work. The output and transfer characteristics were studied for HfO2, PVP and HfO2/PVP as organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric HfO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively, this can be attributed to the increasing of the dielectric capacitance. Transcondactance characteristics also studied for the three organic mater
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
The Makhoul Dam project proposed to be established is considered one of the strategic projects in Iraq as it works to insurance large quantity of water spare in flood seasons, increase the storage capacity of the dams in Iraq, as well as increase food security. The Makhool Dam is located on Tigris River in Salah al-Din Governorate, and 8 km south of the meeting point of the Tigris River with the Lower Zab River. The lake area is about 256 km2. In this research, a mathematical model was prepared by using HEC-RAS Two Dimension Software to analyze the velocity patterns and water depths inside makhool dam reservoir at the highest operational water elevation, based on the designs prepared
The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreThe high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.
Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show More