It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreAn innovative two-step noncatalytic esterifcation technique was proposed to synthesize alkyl esters from free fatty acids simulated in waste cooking oil, as a pretreatment process for biodiesel production, without adding any catalyst under normal conditions of pressure and temperature. The efect of methanol:oil molar ratio, reaction time, mixing rate, and reaction temperature were investigated. The results confrmed that the conversion of the reaction was increased when increasing the methanol molar ratio and decreased in prolonged reaction temperature. High conversion (94.545%) was successfully achieved at optimized conditions of 115:1, 65:1 methanol:oil molar ratio in the frst step and second step, respectively, other conditions i
... Show MoreIncreasing material prices coupled with the emission of hazardous gases through the production and construction of Hot Mix Asphalt (HMA) has driven a strong movement toward the adoption of sustainable construction technology. Warm Mix Asphalt (WMA) is considered relatively a new technology, which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt. The Resilient modulus (Mr) which can be defined as the ratio of axial pulsating stress to the corresponding recoverable strain, is used to evaluate the relative quality of materials as well as to generate input for pavement design or pavement evaluation and analysis. Based on the aforementioned preface, it is
... Show MoreA field experiment was carried out in the fields of the Field Crops Department - Faculty of Agricultural Engineering Sciences. The study included five inbred lines (ZM43W (ZE), ZM60, ZM49W3E, ZM19, CDCN5), given numbers 1, 2, 3, 4 and 5) to study the hybrid vigor and both general and special combing ability (GCA, SCA) of the half diallel mating method, for the spring and fall seasons (2016). The genetic analysis shows that all crosses gave a positive hybrid vigor for grain yield per unit area at the two population densities. the highest value is 116.20% for cross (3´5 )at low density, and 89.22% for cross( 1´4 )at high density. The hybrid vigor for all crosses is positive at two densities for dry matter yield, crop growth rate an
... Show MoreThis paper discusses estimating the two scale parameters of Exponential-Rayleigh distribution for singly type one censored data which is one of the most important Rights censored data, using the maximum likelihood estimation method (MLEM) which is one of the most popular and widely used classic methods, based on an iterative procedure such as the Newton-Raphson to find estimated values for these two scale parameters by using real data for COVID-19 was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. The duration of the study was in the interval 4/5/2020 until 31/8/2020 equivalent to 120 days, where the number of patients who entered the (study) hospital with sample size is (n=785). The number o
... Show MoreThis work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approac
... Show More