Preferred Language
Articles
/
JIa4RIYBIXToZYALgYGp
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.

Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Heliyon
Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production
...Show More Authors

Biodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–

... Show More
View Publication
Scopus (17)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon Mar 27 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Design, Synthesis, Characterization and Preliminary Anticancer Study for Methotrexate Silibinin Conjugates
...Show More Authors

The spectrum of clinical efficacy of Methotrexate (MTX) is broad in that MTX is used in the treatment of certain cancers, severe psoriasis and rheumatoid arthritis.Various mechanisms by which cancer cells grown in tissue culture become resistant to anticancer drugs. The use of multiple  drugs with different mechanisms of entry into cells and different cellular targets allows for effective chemotherapy and high cure rates. In an efforts to develop effective strategies that increase the therapeutic potential of anticancer drugs with less systemic toxicity ,are being directed  towards the investigation of dietary supplements and other phytotherapeutic agents for their synergistic efficacy in combination with anticancer drugs. A promi

... Show More
Crossref (2)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Thu Dec 16 2021
Journal Name
Translational Vision Science & Technology
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
...Show More Authors

View Publication
Scopus (36)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
Dynamic TWGH: Client-Server Optimization for Scalable Combinatorial Test Suite Generation
...Show More Authors

To ensure that a software/hardware product is of sufficient quality and functionality, it is essential to conduct thorough testing and evaluations of the numerous individual software components that make up the application. Many different approaches exist for testing software, including combinatorial testing and covering arrays. Because of the difficulty of dealing with difficulties like a two-way combinatorial explosion, this brings up yet another problem: time. Using client-server architectures, this research introduces a parallel implementation of the TWGH algorithm. Many studies have been conducted to demonstrate the efficiency of this technique. The findings of this experiment were used to determine the increase in speed and co

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology & Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Synthesized 2nd Generation Zeolite as an Acid-Catalyst for Esterification Reaction
...Show More Authors

MCM-48 zeolites have unique properties from the surfaces and structure point of view as it’s shown in the results ,and unique and very sensitive to be prepared, have been experimentally prepared and utilized as a second-generation/ acid - catalyst for esterification reactions of oleic acid as a model oil for a free fatty acid source with Ethanol. The characterization of the catalyst used in the reaction has been identified by various methods indicating the prepared MCM-48 is highly matching the profile of common commercial MCM-48 zeolite. The XRF results show domination of SiO2 on the chemical structure with 99.1% and  agreeable with the expected from MCM-48 for it's of silica-based, and the SEM results show the cubic c

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Jan 04 2018
Journal Name
Journal Of Electrical Engineering And Technology
An efficient selective method for audio watermarking against de-synchronization attacks
...Show More Authors

View Publication
Scopus (8)
Scopus
Publication Date
Fri Feb 28 2025
Journal Name
Journal Européen Des Systèmes Automatisés
Decision-Making Model for Aircraft Landing Based on Fuzzy Logic Approach
...Show More Authors

An aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical

... Show More
View Publication
Scopus (1)
Scopus Crossref