It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
One of the important goals in the learning process is to be effective learning through the self-direction of the learner , because it has an impact on the effort of learners , it is better to be a learner responsible for learning and independent of the acquisition of knowledge ,
اذ اكدتكثيرAs many have confirmed منFrom الدراساتStudies والادبياتAnd literature انthat فشلالكثير The failure of many منFrom الطلبةStudents فيin a تنظيمgroup المعلوماتthe information ومعالجتهاAnd processed اثناءduring عمليةProcess تعلمهمLearn them لاNo يرجعReturns الىto me انخفاضdrop فيin a درجةDegree ذكائهمTheir intelligence اوor عدمNo
... Show MoreDue to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula
... Show MorePurpose: The research seeks to develop the implications of intellectual human capital, and social capital in business organizations, and will be accomplished on three levels, the first level (the level of description) to identify, diagnose and display content philosophical Strategic Human Resource Management at the thought of modern administrative represented by human capital and Ras social capital. The second level (level of analysis) and the analysis of the extent of the impact of alignment between human capital, and social capital in the organizational strength of the organizations. The third level (Level predict) the formulation of a plan to strengthen the organizational strength in business organizations and to develop speci
... Show MoreThis paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parame
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreBecause of cost-effective production and abundant resources of calcium, Ca-ion batteries (CIBs) are an appropriate option to alternate Li-ion batteries (LIBs). A new category of anode materials for CIBs has emerged since the successful synthesis of carbon nanotubes, which are B and N doped derivatives of it. For high-performance CIBs, BC2N nanotube (BC2NNT) has been studied as promising anode materials. In order to comprehend electrochemical attributes, cycling stability, and adsorption behavior of BC2NNT, first-principles computations have been executed. Based on nuclear magnetic resonance computations, two types of hexagonal rings (B2C2N2 (I) and BC4N (II)) were specified that are non-aromatic. Ca has adsorption on B2C2N2 and BC4N with ad
... Show MoreThe development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to both the pharmaceutical industry and the agencies that regulate them. Natural surfactants aid in the dissolution and subsequent absorption of drugs with limited aqueous solubility. In vitro, various techniques have been used to achieve adequate dissolution of the sparingly water – soluble or water insoluble drug products such as the use of mechanical methods (i.e., increased agitation and the disintegration method) or hydro alcoholic medium or large volumes of medium. The necessity of assuring the quality of drugs , especially those with low aqueous solubility and in vivo absorption , has led to the development and
... Show MoreThe searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time. Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle to involve four types of binary code books (i.e. Pour when , Flat when , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s
... Show More