It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
Abstract This study explores the extent to which public relations (PR) departments within Traqj governmental institutions are integrating artificial intelligence (AI) applications into their communication activities. The research adresses the growing importanc of AI in enhancing administrative efficieney, communication transparency, and stakeholder engagement. Adopting a descriptive research design, the study relied on an electtonic questionnaire distributed to PR profesionals across various ministries and government bodies, collecting 100 valid responses. The indings reveal that while younger PR practitioners are actively embracing AI, older employees show limited engagement. Most participants acquired AI-related skills through self- learn
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreThis research focuses on the contemporary geostrategic transformations that afflicted the countries of the Middle East, with a focus on the countries of the Arab East, after the collapse of the system of international relations, and the emergence of the unipolar system led by the United States of America. After the events of September 11 and the events that followed, especially the occupation of Iraq in 2003, the study area witnessed a group of geopolitical variables and the emergence of dangerous phenomena that threatened the state structure in the countries of the Middle East; the most notably are the phenomenon of terrorism, cross-border armed groups, sectarian polarization, the phenomenon of migration and the internal and the externa
... Show MoreCharacterized the Middle East has geographic, economic, and geostrategic peculiarities, but it suffers from many problems, such as disagreement over what it means as a concept, or what it represents of a geographic extension. The question is related to the ambiguity surrounding the concept of the Middle East? The purpose of its launch? As it relates to its geostrategic, economic, and geo-cultural importance? And manifestations of this importance? And to what extent he retained his value in the strategies of the major powers? Research hypotheses:
-The multiplicity of concepts for the Middle East region, with international political and Geostrategic interests.- The geostrategic value of the Middle East has made it a focal point for
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreAbstract
The research aims to identify tax exemptions, their objectives and types, as well as to shed light on the concept of sustainable development, its objectives, dimensions and indicators (economic, social and environmental), as well as to analyze the relationship between tax exemptions and economic development, in addition to measuring and analyzing the impact of tax exemptions on economic development in Iraq for the period ( 2015 - 2021) using the NARDL model. The research problem centers on the fact that failure to employ financial policy tools correctly led to a weakness in achieving economic justice, which leads to a failure to improve social welfar
... Show MoreThe Fauqi field is located about 50Km North-East Amara town in Missan providence in Iraq. Fauqi field has 1,640 MMbbl STOIIP, which lies partly in Iran. Oil is produced from both Mishrif and Asmari zones. Geologically, the Fauqi anticline straddles the Iraqi/Iranian border and is most probably segmented by several faults. There are several reasons leading to drilling horizontal wells rather than vertical wells. The most important parameter is increasing oil recovery, particularly from thin or tight reservoir permeability. The Fauqi oil field is regarded as a giant field with approximately more than 1 billion barrels of proven reserves, but it has recently experienced low production rate problems in many of its existing wells. This study
... Show More
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreThe utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional
... Show More