It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
The study addresses the problem of stagnation and declining economic growth rates in Arab countries since the eighties till today after the progress made by these countries in the sixties of the last century. The study reviews the e
... Show MoreThe present study is an attempt to throw light on the nature of the US policy regarding the Middle East region as portrayed by AI-Sabah, Al-Mashriq and Tariq Al-Shaab papers over a period of three months from 1st of July to 30th of September 2013.
In writing this study, a number of goals have been set by the researcher. These goals may include but in no way limited to the nature of the US image as carried by the above three papers, the nature of the topics tackled by them and the nature of the Arab countries which received more and extensive coverage than others.
A qualitative research approach is proposed for the study. This approach has allowed the researcher to arrive at definite answers for the possible questions rais
... Show MoreThis research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg
... Show MoreAngle of arrival (AOA) estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM), satellite, military applications and spread spectrum (frequency hopping and direct sequence). Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line) (TDL). Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M) array elements is used. A transversal filter (TDL) in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The propo
... Show MoreAbstract
The research aims to identify the logical intelligence of distinguished students and to identify the extent of the contribution of the fields of logical intelligence to the sensitivity of students' sensory processing in distinguished schools. The research sample consisted of (400) male and female students selected by the stratified random method with the proportional method. The scale that was prepared according to the theoretical framework and the adopted theory was applied after being subject to the psychometric properties of validity and reliability, Logical thinking (observation, interpretation, mathematical and arithmetic operations) contributed to sensory processing. The results showed that disting
... Show More
The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2
... Show MoreCOVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduce
... Show MoreThe recent development in statistics has made statistical distributions the focus of researchers in the process of compensating for some distribution parameters with fixed values and obtaining a new distribution, in this study, the distribution of Kumaraswamy was studied from the constant distributions of the two parameters. The characteristics of the distribution were discussed through the presentation of the probability density function (p.d.f), the cumulative distribution function (c.d.f.), the ratio of r, the reliability function and the hazard function. The parameters of the Kumaraswamy distribution were estimated using MLE, ME, LSEE by using the simulation method for different sampling sizes and using preli
... Show MoreIn this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da
... Show MoreJoint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d