It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
The research aims to find out the impact of wages and benefits systems on the performance of employees, which included the research community on a sample of employees in the company, and the sample consisted of (50) employees and an employee, A questionnaire composed as prepared (23) paragraph, use the promised statistically methods in data collected by the questionnaire analysis. The research reached a number of results, the most prominent of which were: There is a correlation between wage systems, benefits and performance of employees, and the presence of the impact of the systems of wages and benefits to the performance of employees. The research was presented a set of recommendations including: increasing the effectiveness of
... Show MoreLeuciscidae species are the abundant and widely distributed fish species in Iraq's inland waters. They are complex species, and morphology makes them difficult to identify. Molecular analysis achieved and confirmed the morphological characters. Twenty specimens of Acanthobrama marmid were collected from two localities at Tigris River, in the middle of Iraq; 15 specimens from the Al-Zubaydia sub-district and five specimens from Al-Tharthar Lake. We used the mitochondrial DNA cytochrome b (cytb) gene to sequence the DNA of A. marmid. The following analysis are compared the sequences with those of other fish genera and species found in the Gene Bank. The barcoding result (DNA sequencing) in fishes found in the same family (Leuciscidae) showed
... Show MoreIn this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
The Agricultural Policy is one of the most important tools adopted by the state to guide its economic and social activities through the delivery of suitable agricultural commodities to the consumer and in return to deliver agricultural inputs to the agricultural producers at the lowest possible cost to contribute in achieving a profit that helps the agricultural product to continue in the production process with the same efficiency and ambition. So as to help increase the contribution of the agricultural sector to GDP and achieve the best picture of sustainable agricultural development.
The research aimed at identifying the reality of agricultural policies and their role in achieving sustaina
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreReservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from w
... Show MoreThis study is achieved in the local area in Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group a carbonate succession and widespread throughout the Arabian Plate. There are four association facies are identified in Mishrif Formation according the microfacies analysis: FA1-Deep shelf facies association (Outer Ramp); FA2-Slope (Middle Ramp); FA3-Reef facies (Shoal) association (Inner ramp); FA4-Back Reef facies association. Sequence stratigraphic analysis show there are three stratigraphic surfaces based on the abrupt changing in depositional
... Show MoreThe Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petroph
... Show MoreIn this paper we study the effect of the number of training samples for Artificial neural networks ( ANN ) which is necessary for training process of feed forward neural network .Also we design 5 Ann's and train 41 Ann's which illustrate how good the training samples that represent the actual function for Ann's.
Objectives: The purpose of this in vitro study was to compare the effect of adding poloxamer surfactant to irrigant solutions on the penetration de..