It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
This paper addresses the nature of Spatial Data Infrastructure (SDI), considered as one of the most important concepts to ensure effective functioning in a modern society. It comprises a set of continually developing methods and procedures providing the geospatial base supporting a country’s governmental, environmental, economic, and social activities. In general, the SDI framework consists of the integration of various elements including standards, policies, networks, data, and end users and application areas. The transformation of previously paper-based map data into a digital format, the emergence of GIS, and the Internet and a host of online applications (e.g., environmental impact analysis, navigation, applications of VGI dat
... Show Moreالاستثمار الاجنبي المباشر في العراق ودوره في تحقيق التنمية الاقتصادية
Radon is the most dangerous natural radioactive component affecting the human population, since it is a radioactive gas that results from the decomposition process of uranium deposits in soil, rocks, and water, and it is damaging both humans and the ecosystem. The radon concentrations and exhalation rate in soil samples from various locations were determined using a passive approach with a CR-39 (CR-39 is Columbia Resin #39; it is allyl diglycol carbonate C12H18O7) detector in Amiriya region in Baghdad Governorate. The average values of radon concentrations are ranged from 47.3 to 54.2 Bq·m−3. From the obtained results, we can conclude that the values of all studied locations are
This is a contribution to study the situation of a dwelling of previous case of kala- azar in the endemic area (AL-Mahmodiya/ AL-Rasheed district) about 25 km south of Baghdad. In order to assess the possible ecological causes of the incidence and the prevalence of visceral leishmaniasis, in one of the well-known foci of the disease in the central region of Iraq. It was found that the human dwelling position and ecological factors affect the infection with this disease.
This research shows the importance of Baghdad in the field of urban heritage and was demonstrated in the Ibn al-Fiqh al-Hamdani's book Baghdad the City of Peace in which he focused on many urban aspects and reviewing its historical importance by connecting them with modern events and the role they play in cultural and civilized construction which included: mosques, schools and markets etc. and the service providing institutions and other pillars of the Islamic cities through showing the development back then and its importance as an integral part of the urban and cultural heritage of the Islamic cities in general and Baghdad city in particular.
In his book Baghdad the City of Peace, Ibn al-Faqih Hamadhaani
... Show MoreIn this study, different methods were used for estimating location parameter and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment estimation (ME),and approximation estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile as estimation for distribution f
... Show MoreThe current study included, studying the ability of eight genera of plants belong to Brassicaceae family, Brassica tournifortii, Cakile Arabica, Capsella bursa – pastoris,Carrichtera annua, Diplotaxis acris, Diplotaxis haru , Eruca sativa and Erucaria hispanica to accumulate ten heavy metals Cadmium, Chromium , Copper, Mercury, Manganese ,Nickel ,Lead ,and Zinc . Plant leaves samples were collected from Al-Tib area during spring of 2021.The data demonstrated that, the highest conc. of Cd was 2.7 mg/kg in Diplotaxis acris leaves and lower value was 0.3 mg/kg in Cakile Arabica leaves. For Co, the highest conc.was 1.3 mg/kg in Capsella bursa – pastoris leaves, whereas the lower value was 0.5 mg/kg in Cakile arabica leaves. As for Cr ele
... Show MoreDumping policy considered as one of the policies occurs severe damages to the developing countries apparently this is happens due to the potential weakness in (productive, technical, legislative, legal institutions) comparing with other developed countries who are members in WTO.
Iraq consider as one of the developing countries that has been effected by the dumping policy, the events in Iraq since downfall of the formal regime, and the allied forces domination of Iraq have all together accelerated in the apace of deterioration , particularly , after the temporary coalition authority has forced Iraq to adopt a free foreign trade policy& exclusion of the state from the market mechanism & to consolidate import and deac
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show More