Preferred Language
Articles
/
JIa4RIYBIXToZYALgYGp
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.

Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conf. Series
Composition, Characterization and Antibacterial activity of Mn(II), Co(II),Ni(II), Cu(II) Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with8- Hydroxy quinoline
...Show More Authors

New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me

... Show More
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Synthesis and characterization of 4-(((3-mercapto-5-phenyl-4H-1,2,4-triazole-4-yl)imino)methyl)-2-methoxyphenol and its complexes with Zr(IV), Cd(II) and Sn(II) ions
...Show More Authors

A series of coordination compounds of Zr(IV), Cd(II) and Sn(II) ions with 4-(((3-mercapto-5-phenyl-4H-1,2,4-triazole-4-yl)imino)methyl)-2-methoxyphenol, as a ligand has been successfully prepared in alcoholic medium. The prepared complexes were characterized quantitatively and qualitatively by using: elemental analysis CHNS, FT-IR spectroscopy, UV-visible spectroscopy, 1H and 13CNMR, atomic absorption measurements, magnetic susceptibility, thermal analysis)TG and DTG) and conductivity measurements. This ligand coordinates as a bidentate that to the metal ions through sulphur and nitrogen of (azomethine group) atoms. According to the spectral data, Cd(II)- and Sn(II)-complexes have coordination of 6 with octahedral geometry while the Zr(I

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FACE IDENTIFICATION USING BACK-PROPAGATION ADAPTIVE MULTIWAVENET
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Face Identification Using Back-Propagation Adaptive Multiwavenet
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
3-D OBJECT RECOGNITION USING MULTI-WAVELET AND NEURAL NETWORK
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 11 2018
Journal Name
Al-khwarizmi Engineering Journal
Control on a 2-D Wing Flutter Using an Adaptive Nonlinear Neural Controller
...Show More Authors

An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2008
Journal Name
Baghdad Science Journal
Synthesis and characterization of VO(II), Cr(III),Mn(II), Fe(II),Zn(II),Cd(II),Hg(II) and UO2(VI) complexes with ligands containing (ONO) and (ON) donor set atoms
...Show More Authors

A new Schiff base o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on (HL) ,have been prepared and characterization.(HL) has been used as a chelating ligand to prepare a number of metal complexes VO(II) ,Cr(III) ,Mn(II),Fe(II),Hg(II) and UO2(II) .and mixed ligands complexes have been prepared between o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on and 8- hydroxy quinoline with VO(II),Zn(II),Cd(II), Hg(II) and UO2(II) the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Chloride contents, Flame atomic absorption technique. in addition to magnetic susceptibility and conductivity measurement. Molar ratio measurement in solution gave comparabl

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Synthesis and characterization Studies of Metal Complexes with Schiff base derived from 4-[5-(2-hydoxy-phenyl)-[1,3,4-oxadiazol-2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one
...Show More Authors

New metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and m

... Show More
View Publication Preview PDF
Crossref