It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
The research aims at recognition of The rate of performing tasks done by the scientific committees in the scientific departments in the University of Baghdad, within the evaluative perspective of the departments’ Heads. To find any statistically significant differences in the responses of the research sample to the rates performance of the scientific committees in scientific departments in the University of Baghdad, within the evaluative perspective of the departments’ Heads, according to the two variables of the social gender; male and females, and field of specialization of Scientific and Humanities. The research sample consisted if (107) heads of the scientific department in the University of Baghdad. The researchers designed a
... Show MoreTo identify the fungi associated with water hyacinth (Eichhornia crassipes [Mart.] Solms), an aquatic weed, which presents in Tigris river from Baghdad south ward. Five regions from middle and south of Iraq (Al-Noumanya, Saeid Bin-Jubier, Al-Azizia, Al-Reyfay and Al-Hay) were selected for this study. Twelve fungal species were isolated. Alternaria alternata, Acremonium sp and Cladsporium herbarum, were the most frequently species (91.66 % ,50 % and 25 %) respectively. The fungi Alternaria alternata, Acremonium sp. and Phoma eupyrena were more aggressive to water hyacinth as (91.66%,83,33%, and 75%) in pathogenicity test.
Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info
... Show Moreتعد الملابس وسيلة هامة لكل مايقوم به الانسان في حياته العامة ، فهي الانطباع والكلمة الخارجية عن ذاته الداخلية فهي تعكس فكرة الفرد عن ذاته وعن شخصيته , كما تعد وسيلة تعبير جمالية وفنية , فهي تساعد على اخفاء عيوب الجسد وابراز محاسنه . ويتوقف اختيار الفرد لملابسه على مجموعة عوامل منها احتياجه , قدراته المالية , سنه , مركزه الاجتماعي , طبيعة عمله ,الظروف الجوية التي يعيش فيها وعلى مايُؤمن به من قيم و
... Show MoreThe study aims to assess some physical, chemical, and bacterial characteristics of two drinking water treatment plants of Al- Dora and Al-Qadisiya in the area of ​​Karkh, Baghdad, Iraq. The areas covered by each plants and these sites of areas selected as the nearest and the farthest point from plants, for winter and summer season. Some physicochemical parameters of water quality were taken in this study and these parameters were temperature water, pH, electrical conductivity, total dissolved solids, free residual chlorine, calcium, magnesium, nitrate, nitrite, sulphate and heavy metals (lead). In addition to four bacterial indicators of drinking water pollution (APC, Total Coliform, Fecal Coliform
... Show MoreThe Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreThis research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-
... Show MoreThe Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope
... Show More