Preferred Language
Articles
/
JIa4RIYBIXToZYALgYGp
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.

Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
A NEW RECORD OF ZIZIPHORA SPECIES (LAMIACEAE) FOR IRAQ
...Show More Authors

    Ziziphora persica Bunge is recorded as a new Study in Iraq. This species has been collected from Jabal Sinjar in Nineveh province in the north western part of Iraq. The morphological characters, habitat and geographical distribution of the species with a key to Ziziphora L. species in Iraq have been provided.

View Publication Preview PDF
Publication Date
Tue Jul 01 2025
Journal Name
Mastering The Minds Of Machines
The Impact of Transfer Learning and Pre-trained Models on Model Performance
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Replacement Models On Determine the Optimal Time to Replacement
...Show More Authors

Abstract:-

            The approach maintenance and replacement one of techniques of operations research whom cares of the failure experienced by a lot of production lines which consist of a set of machines and equipment, which in turn exposed to the failure or work stoppages over the lifetime, which requires reducing the working time of these machines or equipment below what can or conuct  maintenance process once in a while or a replacement for one part of the machine or replace one of the machines in production lines. In this research is the study of the failure s that occur in some parts of one of the machines for the General Company for Vege

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Dual Stages of Speech Enhancement Algorithm Based on Super Gaussian Speech Models
...Show More Authors

Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Dec 31 2018
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
ESTIMATION OF LEAD ELEMENT IN THE BLOOD OF TRAFFIC POLICE IN THE CITY OF BAGHDAD.: ESTIMATION OF LEAD ELEMENT IN THE BLOOD OF TRAFFIC POLICE IN THE CITY OF BAGHDAD.
...Show More Authors

The current study aimed to determine the relation between the lead levels in the blood traffic men and the nature of their traffic work in Baghdad governorate. Blood samples were collected from 10 traffic men and the age about from 20-39 year from Directorate of Traffic Al Rusafa/ Baghdad and 10 samples another control from traffic men too with age 30-49 year and they livedrelatively in the clear cities or contained of Very few traffic areas. The levels of lead in blood estimated by used Atomic Absorption Spectrometry.
The result stated that there is no rising of the levels of lead in blood of traffic men Lead concentration was with more a range from 14 ppm in Traffic police are not healthy They are within the permissible limits, Ap

... Show More
View Publication Preview PDF
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Development of Quality Rating Evaluation of Outgoing Product Case Study Applied at the General Company for Vegetable Oils
...Show More Authors

Research covers the uses the method of Quality Rating Evaluation to evaluate the
quality of production through which a determination of product quality of its production in
order to determine the amount of sales hence the profits for the company. The most important
function is to satisfy consumer at reasonable prices. Methods were applied to the product
(toothpaste) in the General Company for Vegetable Oil – Almaamoon Factory .
The company's has obtained ISO-certified (ISO 9001-2008). Random samples of
final product intended for sale were collected from the store during months (February, April ,
June , October and December) for the year 2011 to determine the "quality rating " through
the applicat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Preview PDF
Publication Date
Tue Sep 06 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Scopus (2)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology & Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref