There is a real problem when adding micro elements to the soil as a result of fixation, sedimentation, washing or toxicity, and thus economic loss. The plant needs micro elements in very small quantities that do not burn the leaves or cause poisoning to plants, including iron, zinc and boron, as they are essential elements for growth and completing the plant's life cycle, and increase the plant's resistance to diseases and insects, activate enzymes, and form the chlorophyll molecule, in addition to their role in oxidation and reduction processes and vital processes. The use of fertilizers with their modern technology has made the process of activating seeds or foliar nutrition a matter of interest to researchers as a complementary process to adding fertilizers through the soil. Micronutrients contribute to the manifestation of the potential energy for the growth and yield of sunflowers, including iron, zinc and boron, and their role in improving germination, seedling growth, field establishment, photosynthesis, fertility, crop production and quality, taking into account the method of adding them, whether through soil addition, foliar nutrition or pre-treatment of seeds. The seed priming technique by soaking in solutions of micronutrient elements or adding them by spraying the vegetative part of the plant is characterized by overcoming the effects of the soil on the availability and absorption of these nutrients, and they are efficient and effective methods of plant nutrition. There is a practical and knowledge gap about the low soil stock of these nutrients, and it has become clear that they can be added in a single combination by seed priming or the vegetative growth stage to bridge this gap and enhance their role in regulating the physiological and vital processes that lead to ensuring increased growth, production and quality and obtaining seeds with high vitality and vigor. It can be concluded that the environmental conditions for growing sunflowers in Iraq are suitable and reveal the possibility of expanding its cultivation, especially when avoiding the weakness, delay and heterogeneity of germination resulting from low seed vitality, environmental conditions accompanying crop cultivation, nutritional deficiency and others through managing the mother plant.
The adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration
... Show More4 Blood Res 2018;53:314-319. Received on August 11, 2018 Revised on August 30, 2018 Accepted on August 30, 2018 Background Iron overload is a risk factor affecting all patients with thalassemia intermedia (TI). We aimed to determine whether there is a relationship of serum ferritin (SF) and alanine ami- notransferase (ALT) with liver iron concentration (LIC) determined by R2 magnetic reso- nance imaging (R2-MRI), to estimate the most relevant degree of iron overload and best time to chelate in patients with TI. Methods In this cross-sectional study, 119 patients with TI (mean age years) were randomly se- lected and compared with 120 patients who had a diagnosis of thalassemia major (TM). Correlations of LIC, as determined by R2-MRI, with SF
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreMM Al-Waiz, AA Al-Nuaimy, HA Aljobori, MJ Abdulameer, Annals of Saudi Medicine, 2006 - Cited by 1
Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
This study investigated the treatment of dairy wastewater using the electrocoagulation method with iron filings as electrodes. The study dealt with real samples collected from local factory for dairy products in Baghdad. The Response Surface Methodology (RSM) was used to optimize five experimental variables at six levels for each variable, for estimating chemical oxygen demand (COD) removal efficiency. These variables were the distance between electrodes, detention time, dosage of NaCl as electrolyte, initial COD concentration, and current density. RSM was investigated the direct and complex interaction effects between parameters to estimate the optimum values. The respective optimum value was 1 cm for the distance between electrodes, (6
... Show MorePot experiment was carried out at the College of Agriculture – Baghdad University during autumn season, 2007. Thirteen treatments were formulated to evaluate the effectiveness of four applications of Phosphorus (0, 60, 60×2 and 120 Kg P. h-1) and three applications of Zinc (0, 25×2 mg Zn. L-1 and 50 mg Zn. Kg soil-1) along with inoculating seeds of bean with strains mixture 889 and 1865 and non-inoculated treatment, on nodulation, yield and protein content in seeds (N%). The results showed that inoculated plants exceeded on non-inoculated one in all the studied characteristics. While, P and Zn, applications at the rate of 60×2 kg/ha and 25×2 mg/L respectively, significantly, increased, nodulation, yield, protein content in se
... Show More