Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding between the 3 MPA ligands and the QDs surface. The XRD results revealed that the synthesized QDs have two crystal structures, wurtzite and cubic zinc blend. FESEM results confirmed that the NPs have a spherical shape with an average diameter of nearly 33.85 nm. TEM analysis confirmed the particle's near sphericity, with an average diameter of around 49.33 nm. The sudden increase in temperature led to increase the particle size. It was found that ligand addition, maintaining the solution's acidity, and autoclaving the material enhanced quantum confinement.
ABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3
... Show MoreSb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreThe paper reports the influence of the thickness on the some optical properties of Fe2O3 thin films,which were prepared by chemical Spray pyrolysis technique on glass substrate heated to 400˚c.The thickness of thin films (250,280,350)nm were measured by using weighting method. The optical properties include the absorbance and reflectance spectra,extinction coefficient,and real and imaginary part of the dielectric constant.The result showed that the optical constant(k,εr,εi)decreased with the increase of the thickness.
Thin films of (Cu2S)100-x( SnS2 )x at X=[ 30,40, &50)]% with thickness (0.9±0.03)µm , had been prepared by chemical spray pyrolysis method on glass substrates at 573 K. These films were then annealed under low pressure of(10-2) mbar ,373)423&473)K for one hour . This research includes , studying the the optical properties of (Cu2S)100-x-(SnS2)x at X=[ 30,40, &50)]% .Moreover studying the effect of annealing on their optical properties , in order to fabricate films with high stability and transmittance that can be used in solar cells. The transmittance and absorbance spectra had been recorded in the wavelength range (310 - 1100) nm in order to study the optical properties . It was found that these films had direct optical band
... Show MoreCalcium-Montmorillonite (bentonite) [Ca-MMT] has been prepared via cation exchange reaction using benzalkonium chloride [quaternary ammonium] as a surfactant to produce organoclay which is used to prepare polymer composites. Functionalization of this filler surface is very important factor for achieving good interaction between filler and polymer matrix. Basal spacing and functional groups identification of this organoclay were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy respectively. The (XRD) results showed that the basal spacing of the treated clay (organoclay) with the benzalkonium chloride increased to 15.17213 0A, this represents an increment of about 77.9% in the
... Show MoreThe nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreOver the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities