Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding between the 3 MPA ligands and the QDs surface. The XRD results revealed that the synthesized QDs have two crystal structures, wurtzite and cubic zinc blend. FESEM results confirmed that the NPs have a spherical shape with an average diameter of nearly 33.85 nm. TEM analysis confirmed the particle's near sphericity, with an average diameter of around 49.33 nm. The sudden increase in temperature led to increase the particle size. It was found that ligand addition, maintaining the solution's acidity, and autoclaving the material enhanced quantum confinement.
The semiconductor ZnO is one of II – VI compound group, it is prepare as thin films by using chemical spray pyrolysis technique; the films are deposited onto glass substrate at 450 °C by using aqueous zinc chloride as a spray solution of molar concentration 0.1 M/L. Sample of the prepared film is irradiating by Gamma ray using CS 137, other sample is annealed at 550°C. The structure of the irradiated and annealed films are analyzed with X-ray diffraction, the results show that the films are polycrystalline in nature with preferred (002) orientation. The general morphology of ZnO films are imaged by using the Atomic Force Microscope (AFM), it constructed from nanostructure with dimensions in order of 77 nm.
The optical properties o
A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show MoreAfter looking at the books of the first two grammarians, may God have mercy on them and reward them for what they have provided us with the rules of service to the Book of God and service to Arabic, we must highlight some of the things that the grammarians wanted to clarify, which did not come out of what they proved, but we are working on the statement of the issuance of the passport Provisions from the syntactic industry, and whether it is intended to prove a rule is not very added to the statement of speech, and we know that language, any language was the function of understanding; therefore they said: (speech is a useful word that indicates the benefit improves silence on them), and this concept between Grammatical controls and conte
... Show MoreIn this work, nanostructured TiO2 thin films were grown by pulsed laser deposition (PLD) technique on glass substrates. TiO2 thin films then were annealed at 400-600 °C in air for a period of 2 hours. Effect of annealing on the structural and morphological were studied. Many growth parameters have been considered to specify the optimum conditions, namely substrate temperature (300 °C), oxygen pressure (10-2 Torr), laser fluence energy density (0.4 J/cm2), using double frequency Q-switching Nd:YAG laser beam (wavelength 532nm), repetition rate (1-6 Hz) and the pulse duration of 10 ns. The results of the X-ray test show that all nanostructures tetragonal are polycrystalline. These results show that grain size increase fr
... Show MoreThis research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show MoreA condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
Most dental supplies don't seem to be much of a barrier against germ infiltration. Therefore, the filling must be done with perfect caution and high antimicrobial effectiveness. When dental erosion occurs due to germs that lead to caries, a dental filling is used, creating a small microscopic space between the dental filling and the root end infiltration. This allowed the tooth to be penetrated for the second time, which was the research problem. Adding two compounds to antibacterial fillers (zinc polycarboxylate cement) made them work better: Firstly, was zinc oxide (ZnO) that was made chemically, and secondly, was green ZnO nanoparticles that were made from orange peels and mixed with ZPCC in different amounts. The study was conducte
... Show More In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm. The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.
This research explores the preparation of polypyrrole (PPy) using chemical oxidation and its enhancement with graphene oxide (GO) for optical sensor applications. PPy was synthesized by polymerizing pyrrole monomers with ferric chloride (Fe2Cl3) as the oxidant. The resulting PPy was then combined with GO to form a composite material, aiming to improve its electrical and optical properties. Polypyrrole nanofibers were obtained and after adding graphene oxide, the sensitivity increased. Characterization techniques including UV-Vis spectroscopy, DC conductivity measurements, Field Emission Scanning Electron Microscopy (FESEM) and response of photocurrent analysis were employed. The incorporation of GO into PPy resulted in a significant reducti
... Show More