Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding between the 3 MPA ligands and the QDs surface. The XRD results revealed that the synthesized QDs have two crystal structures, wurtzite and cubic zinc blend. FESEM results confirmed that the NPs have a spherical shape with an average diameter of nearly 33.85 nm. TEM analysis confirmed the particle's near sphericity, with an average diameter of around 49.33 nm. The sudden increase in temperature led to increase the particle size. It was found that ligand addition, maintaining the solution's acidity, and autoclaving the material enhanced quantum confinement.
Abstract
In this work, the plasma parameters (electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD)) have been studied by using the spectrometer that collect the spectrum of Laser produce CdTe(X):S(1-X) plasma at X=0.5 with different energies. The results of electron temperature for CdTe range 0.758-0.768 eV also the electron density 3.648 1018 – 4.560 1018 cm-3 have been measured under vacuum reaching 2.5 10-2 mbar .Optical properties of CdTe:S were determined through the optical transmission method using ultraviolet visible spectrophotometer within the r
... Show MoreClassical cryptography systems exhibit major vulnerabilities because of the rapid development of quan tum computing algorithms and devices. These vulnerabilities were mitigated utilizing quantum key distribution (QKD), which is based on a quantum no-cloning algorithm that assures the safe generation and transmission of the encryption keys. A quantum computing platform, named Qiskit, was utilized by many recent researchers to analyze the security of several QKD protocols, such as BB84 and B92. In this paper, we demonstrate the simulation and implementation of a modified multistage QKD protocol by Qiskit. The simulation and implementation studies were based on the “local_qasm” simulator and the “FakeVigo” backend, respectively. T
... Show MoreAbstract The concept of quantum transition is based on the completion of a succession of time dependent (TD) perturbation theories in Quantum mechanics (QM). The kinetics of "quantum" transition, which are dictated by the coupled motions of a lightweight electrons and very massive nuclei, are inherent by nature in chemical and molecular physics, and the sequence of TD perturbation theory become unique. The first way involved adding an additional assumption into molecule quantum theory in the shape of the Franck-Condon rule, which use the isothermal approach. The author developed the second strategy, which involved injecting chaos to dampen the unique dynamically of the bonding movement of electrons and nuclei in the intermediary state of
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
CuAlTe2 thin films were evaporation on glass substrates using the technique of thermal evaporation at different range of thickness (200,300,400and500) ±2nm. The structures of these films were investigated by X-ray diffraction method; showing that films possess a good crystalline in tetragonal structure. AFM showed that the grain size increased from (70.55-99.40) nm and the roughness increased from (2.08-3.65) nm by increasing the thickness from (200-500) nm. The optical properties measurements, such as absorbance, transmtance, reflectance, and optical constant as a function of wavelength showed that the direct energy gap decreased from (2.4-2.34) eV by the gain of the thickness.
In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and
... Show MoreThe Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.