The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
The corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
KE Sharquie, AA Noaimi, AG Al-Ghazzi, Journal of Dermatology & Dermatologic Surgery, 2015 - Cited by 19
Pesticide poisoning is a serious global public health issue and is responsible for a sizable number of annual fatalities. This study was designed to examine the potentially harmful effects of adult rats being exposed to imidacloprid (IMD) as a nanoparticle by determining the chronic effect of inhalation of (5,10 and 20) mg/kg/b.w. of nano-imidacloprid for a duration of 60 days. The most important biochemical parameters of the serum liver function parameters were aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase ALP, kidney function [blood urea, creatinine, and urea], and oxidative stress parameters (MDA, GSH, and CAT) in all treated groups when
Objective: The purpose of this work was to develop and optimize the emulgel formulation of piroxicam with two types of gelling agent chitosan and xanthan gum. The release profiles of prepared formulas were investigated. In addition, the rheology and stability of the best formula were investigated.Methods: Emulsified piroxicam was prepared to use oleic acid, tween 80 and PG with a ratio (3:10:10). In xanthan based emulgel, the xanthan gum (1% and 1.5%) was spread as powder on emulsified piroxicam with stirring until emulgel was formed. In chitosan-based emgels, Chitosan gel was added to emulsified piroxicam and stirring until the Emulgel was constructed. Chitosan gels were prepared by incorporating different concentration, 2%, 3%, 6%
... Show MoreBuckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda
... Show MoreThis work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44
... Show MoreThe aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.